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PREFACE

The G400PROP mathematical formulations and resulting computer code
described herein were developed by United Technologies Research Center
(UTRC) under contract NAS3-22753, '"Development of a Comprehensive Aeroelastic
Analysis for Propellers'. This contract was through the Lewis Research Center
of NASA with Mr. Oral Mehmed acting as contract monitor. The initial develop-
ment of the G400 analysis was conducted at UTRC by Dr. Richard L. Bielawa
under Corporate sponsored independent research and development. Extensive
refinements to the analysis were made under sponsorship of the Langley Research
Center of NASA and the U.S. Army Mobility R&D Laboratory, Langley Directorate
as part of Contract NAS1-10960. Subsequently, further development was
supported by Sikorsky and Hamilton Standard Divisions of United Technologies
Corporation as well as the Structures Laboratory of the USRTL (AVRADCOM) under
contract NAS1-16058. Sally Ann Johnson was responsible for developments in
the expanded eigensolution, the PANPER interfacing and sample calculation
portions of the report. She furthermore shared with Dr. Ray !M. Chi in the
development of the unstalled unsteady airloads development. Dr. Santu T.
Gangwani was responsible for the extentions of the UTRC stalled airloads
theory to the higher subsonic Mach numbers.
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Aeroelastic Analysis for Propellers -
Mathematical Formulations and Program
User's Manual*

by

Richard L. Bielawa,
Sally A. Johnson,
Ray M. Chi,

Santu T. Gangwani

United Technologies Research Center

SUMMARY

Mathematical development is presented for a specialized propeller
dedicated version of the United Technologies Corporation G400 Rotor Aero-
elastic Analysis. This specialized analysis, G400PROP, simulates aeroelastic
characteristics particular to propellers such as structural sweep, aerodynamic
sweep and high subsonic unsteady airloads (both stalled and unstalled).
Detailed formulations are presented for these expanded propeller related
methodologies. Results are presented of limited application of the analysis
to realistic blade configurations and operating conditions which include
stable and unstable stall flutter test conditionms.

Sections are included for enhanced program user efficiency and expanded
utilization. This material includes (1) a detailed description of the
structuring of the G400PROP FORTRAN coding, (2) a detailed description of
the required input data, (3) a detailed description of the output results,
and (4) general information to facilitate operation and improve efficiency.

* The research effort which led to the results in this report was financially
supported by the NASA Lewis Research Center under contract no. NAS3-22753.



INTRODUCTION

With recent renewed interest in propellers has come a redirection of
design innovation and a need to advance the state-of~-the-art in this
technology. Major advances in materials and construction techniques on one
hand, and the increasing ability to optimize basic aerodynamic efficiency
on the other, are producing propeller designs which now require greater
attention to analysis. A notable example is the so-called prop-fan which
has extensive structural and aerodynamic sweep, relatively thin sections and
operates in transonic flow conditions. This general acceleration in the growth
of propeller state-of-the-art has especially increased the importance of
structural integrity in a dynamic and/or aeroelastic environment. It is this
aspect of propeller development to which the subject matter of this report is
directed.

Definition of Problem

The assurance of satisfactory structural dynamic behavior and in particular
aeroelastic (flutter) stability requires an accurate aeroelastic analysis
specifically directed to the particular characteristics of advanced propeller
designs. The purpose of this document is to describe the more important
details of the G400PROP aeroelastic analysis developed to satisfy the analysis
requirements of advanced propeller designs.

The specific characteristics of advanced technology propellers as they
relate to aeroelasticity can be readily identified. First, these propellers
will generally continue to have sufficiently high aspect ratios, thereby
justifying the treatment of them as beams for most aeroelastic problem areas.
It is to be expected that, for some configurations with relatively low

aspect ratio and high structural sweep, the beam theory formulation may have
to be abandoned in favor of a more comprehensive plate theory formulation

for some aeroelastic problem areas. The relatively low-cost advantages of
beam theory formulations, however, together with the sustained applicability
to configurations which do have high aspect ratios clearly justify develop-
ment of a comprehensive aeroelastic analysis for propellers using beam theory.

A second relevant characteristic of advanced technology propellers is
the departure from the usual straight, torsionally rigid planforms. Within
the technology available to build them, propellers are being designed with
large sweeps and thinner sections to be rotated at significantly increased
tip speeds in order to capitalize on the aerodynamic efficiencies which
result. Structural sweep in a propeller blade is a relatively new and
important aeroelastic consideration and clearly must be dealt with. The prime



importance of sweep is the large degree of coupling it introduces between
bending and torsion. Based on experience with fixed wing sweep, this
coupling must necessarily alter the aeroelastic behavior of propellers.
The degree of aeroelastic involvement will also increase for these
propellers due to the relative torsional softening caused by the thinner
sections. Of particular significance is the increased susceptibility of
these propellers to stall flutter, a condition usually experienced at the
high thrust (high pitch angle) static flow conditions at take off.

With the exception of structural sweep, the established validity of a
beam formulation and the requirement to analyze known rotary wing aero-
elastic phenomena (including stall flutter) form Justifications for using
a helicopter rotor aeroelastic analysis as a basis for advanced propeller
aeroelastics. To this end, a highly successful helicopter and wind turbine
aeroelastic analysis, the United Technologies Corporation (UTC) G400 Rotor
Aeroelastic Analysis, was selected for enhanced development appropriate
to advanced technology propellers. Two features of this analysis made it
especially attractive to this application: First, it already had an
advanced method for analyzing stall flutter, and second, it was formulated
elastomechanically in a manner as to accommodate readily the inclusion of
built-in structural sweep. Under NASA sponsorship, a development effort was
therefore undertaken to modify a copy of the UTC G400 analysis into a compre-
hensive aeroelastic analysis dedicated to the requirements of both general
aviation and advanced technology propellers.

Figure 1 presents an overview of this resulting computer code, G400PROP.
The three principal types of inputs to the code are the physical description
of the propeller (geometry, inertia, and elastic properties), the flight
condition as defined by air density, speed of sound, propeller airspeed, and
control (pitch) angle and, finally, an optional description of the detailed
flow field resulting from nacelle blockage and wake/nacelle interaction
considerations. The analysis generates dynamic equations of motion, which
use a beam theory, normal modes basis and incorporates the higher order aero-
elastic characteristics of structural sweep, structural twist, and unsteady
airloads. For these dynamic equations, two principal solution types are
produced: (1) eigensolutions, as defined in the Laplace Transform variable
domain, and (2) time-history solutions appropriate to the calculation of
transients. The principal uses of the eigensolution are the calculations
of vacuum coupled modes (frequencies and mode shapes), and of those aero-
elastic stability phenomena which can be readily linearized. The principal
uses of the time-history solution are the calculations of transients result-
ing either from strongly nonlinear aeroelastic stability phenomena or control
inputs, of aerodynamic performance, and of harmonic responses of both hub
loads and blade stresses resulting from harmonic aerodynamic excitation.
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Figure 1. Overview of G400PROP Aeroelastic Analysis




The version of the G400 used as a basis for the development of G400PROP
was already structured in the form shown in Figure 1. However, several
specific modifications and enhancements were required to develop G400PROP.
Principal areas in which modifications were required consisted of the following:

1. All specific helicopter and wind turbine related modelings were
to be stripped.

2. The eigensolution portion of the analysis was to be upgraded
to include both structural and aerodynamic sweep.

3. The established UTRC unsteady stalled airloads methodology was
to be extended to include high subsonic Mach number data.

4. A differential equation (transfer function) modeling of unsteady
unstalled airloads was to be developed and implemented.

5. The analysis was to be configured to interact with an existing
variable inflow analysis which describes the propeller/nacelle
interactive flow field.

Review of Existing Documentation

The G400PROP propeller aeroelastic analysis described herein represents
a specialization of an ongoing aeroelastic analysis development originally
formulated for the unique aeroelastic characteristics of the composite
bearingless rotor. It represented an advancement in the state-of-the-art
with regard to the modeling of rotors with time-variable, nonlinear structural
twist and multiple structural redundancy, as described in Reference 1. Since
the publication of that report, the basic G400 program has evolved into a
family of analyses with a completely general range of applicability in
rotor type (articulated, hingeless, teetered) and vehicle application
(helicopters, propellers, wind turbines).

Most of the major documentation available on the G400 technology is
contained in References 1 through 3. A review of their existing literature
with regard to analytical alternatives to the G400 approach is contained
in Reference 1 and a review of such alternate approaches now would be
inappropriate. Reference 1 presents most of the basic ideas inherent in
the G400 methodology upon which the present continuing development was made.
The primary purpose of the present report, therefore, is to present the
additional formulations required to meet the special requirements of analyzing
advanced technology propellers. In addition, the development of this propeller
oriented code coincidentally resulted in enhanced general program efficiency
and capability. Therefore, a secondary purpose of this report is to increase



program user efficiency and to facilitate integration of G400PROP into
industrial propeller design processes.

Summary of New Technology

All of the objectives identified for this development, as itemized in
the first subsection above, were successfully met. The first major section
to follow summarizes the unified theory developed for extending the original
G400 twist related transformations to the more general case including
structural sweep. The next four sections deal with elements of advanced
aerodynamic modeling especially important to propellers. The first and fourth
of these, which deal with aerodynamic sweep and inflow, respectively, are
related more to aerodynamic "geometry" and are applicable even to steady
flow conditions. The second and third of these aerodynamic sections deal
with truly unsteady airloads and are those most directly related to propeller
aeroelasticity. The following section presents the salient features of the
enhanced eigensolution which include details of the modeling of perturbational
sweep and unstalled unsteady related airloads. The following section presents
details of limited application of the analysis to realistic propeller designs
and appropriate operating conditions. The remaining four sections provide
detailed program user information for the actual G400PROP computer program
which implements the formulations presented herein.



LIST OF SYMBOLS AND FORTRAN EQUIVALENTS

Symbol FORTRAN Equiv.
A ARATE, AUNST
[A] AA
Al’AZ'A3 CLAl,CLA2,CLA3,
(CMA1,CMA2,CMA3)
a,b,c,d,e,f (None)
aL A0
a_ SPSD
B TL
&3] BB
B,,B ,B_,B CLB1,CLB2,...
1’ 2° » 4 ’ » »
3 (CMB1,CMB2,...)
b BL
{c} cc
o .CW,C'J (CADM, CARE),
(CWDM, CWRE) ,
CATE
CD Ls'cMs CDS,CLS,CMS
~ . o ~,
TR AT UNCD, UNCL, UNCM
_CLl,a 12 DELC1,DELC2
c CHORD , CHORDB
4 CD,ACD,CDTOT
CdyCdg CDP, (CDS, CDSKNF)
c, CL,ACL
i 2Cmy (None)
Cin’Smp (None)
Cig0Cm, (None)
mrCme /4, CM,ACM

Description

Nondimensional aerodynamic section angle-of-attack time derivative
(=ac/2U,)

Inertia coupling matrix

Coefficients for inflow angle Padé augmented state variables, for either
lift (or pitching moment) coefficients, (ND)

Coefficients defining Pade approximant functionality
Aerodynamic section static lift curve slope, z‘.leg-1
Sonic velocity at freestream conditions, fps

Tip loss factor

Damping matrix for blade eigensolution

Coefficients for pitching angle Pade augmented state variables, for either
lift (or pitching moment) coefficients, (ND)

Number of blades

Stiffness matrix for blade eigensolution

Empirical coefficients multiplying A, a, and a, respectively, in dynamic
stalled airloads functionality, (ND)

Aerodynamic section static drag, lift and pitching moment coefficients,
respectively, as used in unsteady stalled airloads modeling

Aerodynamic section unsteady drag, lift and pitching moment coefficients,
respectively, (ND)

Incremental lift coefficients (ND)
Blade section chord, ft and (ND)
Section aerodynamic drag coefficient, (ND)

Section aerodynamic pressure and skin friction drag coefficients, respec-
tively, (ND)

Section aerodynamic 1lift coefficient, (ND)

Unsteady aerodynamic section lift and pitching moment coefficients, respec-
tively, due to pitching motion

Unsteady aerodynamic section 1ift and pitching moment coefficients, respec-
tively, due to plunging motion

Steady-state section lift and pitching moment coefficients, respectively, to
be used in conjunction with the incremental Padé section lift and moment

coefficients, (ND)

Section aerodynamic pitching moment about the quarter chord, (ND)



Symbol

Lo’ Ly’ Ly
CDO'CDI'cDZ

€4

bc
Acl,Acm

Dp'Ds

DUEAE, , DUEAF g

DUEAO

[DFDZ]
EB;y
EB,

EI EI

y’ z

1E
1F,2F,3F,4F,5F

GJ

kp

kle'kzlo

LIST OF SYMBOLS AND FORTRAN EQUIVS. (Cont'd)

FORTRAN Equiv.

CLOPAN, CL1PAN,
CL2PAN

CDOPAN, CD1PAN,
CD2PAN

CRDPAN

(None)

DCL,DCM

(None)

DUEAE,DUEAF

DUEAO

DFDZ

EB1B

EB2B

EIYB,EIZB

ER

(None)
(None)
GJ,GJT,GJEFF
(None)
(None)
(None)
(None)
(None)

PRGS

KY10,KZ10

Description

Quadratic components of the 1ift coefficient required by PANPER routine
Quadratic components of the drag coefficient required by PANPER routine

Blade section chord in the 4-coordinate system, (ND)

Generalized incremental 1ift or pitching moment coefficient, defined by
Padé theory, (ND)

Incremental section lift, or pitching moment, coefficients defined by
Padé theory, (ND)

Section aerodynamic pressure and skin friction drags, respectively, 1b/in.

Radial foreshortening of blade element point due to linear variations of
k'th edgewise and i'th flatwise bending modes, respectively, (ND)

Radial foreshortening of blade element point due to built-in sweep

Partial derivative matrix of aerodynamic loadings with respect to inter-
mediary perturbation vector

Nonlinear torsion stiffness parameter (to be multiplied by twist rate
cubed), 1b-ft®

Torsion to edgewise elastic coupling stiffness (to be multiplied by twist
rate), lb-ft

Section bending stiffness in flatwise and edgewise directions, respectively
1b-in.2 or (ND)

X, coordinate of coincident flat-lag hinge or hingeless blade offset
point, in.

1st blade edgewise mode

ist through Sth blade flatwise modes

St. Venant (linear) torsion stiffness, lb-in.2
Edgewise area moment of inertia distribution, in.a
Flatwise area moment of inertia distribution, in.k
Identify matrix of dimension m

Square root of -1-

Aerodynamic section reduced frequency (= we/20y)
Area radius of gyration of tension carrying portion of blade section, in.
Mass radii of gyration of blade section about axes through and perpendicular

to the spanwise (xg) axis and in the chordwise and thicknesswise directions,
respectively, in.



LIST OF
Symbol FORTRAN Equiv.
L (None), ELL
M MACH
My (None)
© XMASSB
m, MO
NEM, NFM, NTM (Same)
n N
n),7,0 (None)
o() (None)
P (None)
P1,P2,P3 P1,P2,P3
P (None)
Pxs*Pys*Pzg  SX5,5Y5,525
P1.P; CLP1,CLP2
(CMP1,CMP2)
P1+P2 CLP1C,CLP2C,
(CMP1C,CMP2C)
Q;+Qy»-++Q;  Q1,Q2,...Q7
{q} Q
q Q
v QVL(K)
Guy QWL(T)
Uxgrlygrdzg  XM5,YM5, 245
94 QTL(J)
R R
R, (None)
Ry,Rp,...Rg  ARE1,ARE2,...ARES
r X

SYMBOLS AND FORTRAN EOUIVS. (Cont'd)
Description

Alternately (section aerodynamic 1lift distribution), and local radius of
intersection of blade section midchord with section boundary, measured fror
axis ¢ , (ND)

Mach number

Section aerodynamic pitching moment distribution, in.-1b/in.

Blade mass distribution (ND)

Reference blade mass distribution, taken to be that of the 5th blade segrent,
1b-sec?/ft?

Numbers of assumed flatwise, edgewise, and torsion natural "uncoupled”
primitive modes, respectively

Blade segment index

Unit vectors defining aerodynamically swept coordinate system, (ND)
Denotes order of magnitude

Per rotor revolution, (ND)

Empirical coefficients for C;, functionality

Aerodynamically nondimensional Laplace transform variable

Section shear load distributions in directions of axes in the 5-coordinate
system, (ND)

Pade poles for pitching, for either 1ift or pitching moment ccefficicr-s.
(ND)

Pade poles for plunging for either 1lift or pitching moment coefficients,
(D)

Empirical coefficients for Cpy functionality

Vector of blade degrees-of-freedom

General expression for a response variable deflection
Blade k'th edgewise modal response variable

Blade 1'th flatwise modal response variable

Section moment load distributions about axes in the S-coordinate system,
(ND)

Blade j}th torsion modal response variable
Rotor radius, ft

Reynolds number

Empirical coefficients for Cpy functionality

Blade spanwise coordinate, measured from offset, e, in x5 direction (ND)



LIST OF SYMBOLS AND FORTRAN EQUIVS. (Cont'd)

Symbol FORTRAN Equiv.

Ari,Axi DX, QUAD

s SSS

sn SSSM

T TENSB, TENST

[TAS) TAS

A

[TAS( )] ATAS

[TRasl TR45

1T,2T (None)

t T

tdm (None)

v U

UN UN

Ug»UrsUp UR,UT,UP

L'RS,UTS,UPS URSQC,UTSQC,
UP5QC

UELSETkj.UELSFTij, UELSET,UELSFT,

UZLASE, - (LE_ASF;

IANVAN

\e,ke

Vy6e,VZGe

av,bw

Av Av y
L B1” Tleyy
uVEAj

A
im

Aka,Awekj.AuEAj

CELAGE,URLAST

UE

VEL,VELBAR
WD1S
(None)

VE,VE

(None)

(None)

DVB,DVE,DVEA

VO, VINDND,PANVO

DWB,DWE,DWEA

Description

i'th blade spanwise segment (arc) length, (ND)
Aerodynamic time

Nondimensional time measured from instant of stall onset
Tension at an arbitrary spanwise station, (ND)

Coordinate transformation matrix relating "5'" and "6" coordinate systems,
due to structural sweep, (ND)

Coordinate transformation matrix relating "5" and "8" coordinate systems,
due to aerodynamic sweep, (ND)

Coordinate transformation matrix relating "4" and "5" coordinate systems,
(ND)

1st and 2nd blade torsion modes

Time, sec

Time when dynamic stall first occurs

Total aerodynamic section inflow velocity, (ND)

Vector sum of Up and Up aerodynamic section, inflow velocities, (ND)

Total aerodynamic section inflow velocities in "6" coordinate svstem radial,
tangential and upflow directions, respectively, (ND)

Aerodynamic section inflow velocities in "5" coordinate system radial, tan-
gential and upflow directions, respectively, excluding blade motionm, (XD)

Radial foreshortening of blade element due to nonlinear variations of edge-
wige, f.etwise and tersica meces, (ND)

Inward radial (x5) foreshortening of blade element point due to combinaticn
of built-in sweep and elastic deformation, (ND)

Trimmed rotor flight speed, kts and (ND)
Blade mass distribution, lb/in.
Deflection correction terms due to second order twist effects, (¥D)

Elastic deflections in the edgewise and flatwise directions, respectively,
(ND)

Components of aerodynamic section inflow velocities in "6'" coordinate syvster
tangential and upflow directions, respectively, due to blade motioms, (\D)

Deflection correction functions due to first order twise effects, (XD)

Edgewise motion deflection correction functions, (ND)

Induced velocity based on momentum balance considerations, fps or (ND)

Flatwise motion deflection correction functioms, (ND)

10



*51Y5025
x(.')'[‘vz[‘
~argn'YrEs,
4LEB
¥aqc*Yaqe Z4ge

Xg»Ygr28
Y6126

Y10°*10

Y10, %10ga
8Y10g,°5%10g,
Y10¢g

10¢/4*7103¢ /4

.
~N
~—

LIST OF SYMBOLS AND FORTRAN EQUIVS. (Cont'd)

FORTRAN Equiv.

XALFW, YALFW

XN, YN, ZN,WN,

(XNM, YNM, ZNM, WNM)

XX5,YY5,225

(None)

X4LEB,Y4LEB,
Z4LLEB

X4QC,Y4QC, 24QC

(None)

YY6,226

(None)

Y10EA,Z1OEA

Y10EAC, Z10EAC

Y10CG

Y10QC,Y103QC

(None)
AL,ALF,ALTAB
ALDM

ALTAB

ALRTCH
ALFSS
(None)
ALFW
(None)
(None)

DELA1,DELA2

Description

Time variables used to calculate a,, using a recursion formula

Pade augmented state variables, for either 1ift (or pitching moment)
Components of the 5-coordinate system, defined to be rotating with the hub,
but at the blade coned and lagged position, (ND)

Components of the 4-coordinate system, defined by vectors taken locally at
the cylindrically-oriented segment boundaries, (ND)

Components of the 4-coordinate system, taken at the intersection of the seg-
ment leading edge with the segment boundary (ND)

Components of the 4-coordinate system, taken at the intersection of the seg~
ment quarter chord with the segment center, (ND)

Components of the 8-coordinate system, defined similar to 6-coordinate sys-
tem, but displaced by bending and oriented by the aerodynamic sweep angle

L]
Displacements in the 6-coordinate system, defined locally normal to built-ir
elastic axis

Chordwise and thicknesswise position coordinate, respectively, of an arbi-
trary point within a blade section, (ND)

Built-in offset distances of elastic axis from X5 axis, in edgewise and
flatwise directions, respectively, (ND)

Changes per segment (arc) length of built-in elastic axis edgewise and flat-
wise offsets, respectively

Chordwise distance of blade section mass center forward from the elastic
axis, (ND)

Chordwise distances of blade section quarter chord and three quarter chord
locations, respectively, forward from the elastic axis, (N\D)

Vector of intermediary aerodynamic variables
Section angle-of-attack, deg and rad
Aerodynamic section dynamic stall angle-of-attack, deg

Effective aerodynamic section angle-of-attack, including effects of unsteady
decay parameter, deg

Aerodynamic section reattachment angle-of-attack, deg
Aerodynamic section static stall angle-of-attack, deg
Section angle-of-attack when vortex nears the trailing edge
Aerodynamic section unsteady decay parameter, rad

Mean angle-of-attack for oscillating airfoil, deg

Angular amplitude for oscillating airfoil, deg

Aerodynamic section angle-of-attack shifts to account for unsteady effects

11



61,62,63,66
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LIST OF SYMBOLS AND FORTRAN EOUIVS. (Cont'd)

FORTRAN Equiv.
BETAT,FACPGT
PREC,BETAB,
BTAERO

BETAl

SHAPE

GTNLY,GTNLZ

GTNLYP,GTNLZP

GAMMA

GV
GW
GT
(None)

DELTAB,DELTAT

PREL,DELTB,
DLAERO

DELLC1,DELLC2,
DELLC3,DELLC4

(None)

ETALE,ETATE

ETAl,ETA2,...,
ETAS8

TH
THETA
™
THE

THAO,
(TH7S5, THETAO)

PCHPAN

Description

Alternately, total cone angle, rad, and Prandtl-Glauert transformation
factor, (=/1-M2)

Built-in Blade precone, deg or radians, as appropriate

Empirical constant, normally equals 0.18
Galerkin method integration weighting matrix

Nonlinear j'th torsion modal weighting function for torsion excitation due
to edgewise and flatwise force loadings, respectively, (ND)

Nonlinear j'th torsion modal weighting functions for torsion excitation due
to flatwise and edgewise moment loadings, respectively, (ND)

Total aerodynamic sweep angle consisting of built-in and radial flow
contributions, rad

Deflection mode shape for the k'th edgewise normal mode, (ND)

Deflection mode shape for the i'th flatwise normal mode, (ND)

Deflection mode shape for the j'thtorsion normal mode, (ND)

Effective torsion mode shape due to integration of cosine components, (ND)
Total blade lead angle, radians

Denotes perturbational quantity

Built-in blade prelead, deg or rad, as appropriate
Dynamic parameters used in dynamic stalled airloads functionality, (ND)

The approximate distance measured from the G400 S-coordinate system segment
boundary to the 4~coordinate system segment boundary, at a generalized blade
chordwise location

The approximate distances measured from the G400 5-coordinate system segment

boundary to the 4-coordinate system segment boundary, at the blade leading
and trailing edges, respectively, (ND)

Empirical coefficients for Cyy, functionality

Total local blade pitch angle, radianms

Built-in blade pitch angle (structural twist), deg or rad
Built-in twist rate, (ND)

Elastic torsion deflection angle, radians

Alternately, local static blade pitch angle, as defined by Padée filtering
technique, or pitch angle due to input control angle, deg and rad

Local blade pitch angle in the 4-coordinate system, radians
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LIST OF SYMBOLS AND FORTRAN EQUIVS. (Cont'd)

FORTRAN Equiv.
THTIL

CAPPA
QMES
AGMES
GMF5

AGMFS

DGAM

LAMBDA, (NONE)
X1

ZETA

ZETAMC

RHO
SIGMA,ROOTE
SIGXL,SIGYL,
SI1GZL,SIGWL,
(SIGXM,SIGYM,
SIGZM, SIGWM)

(NONE)

PHI

PHIO

PHTILN

(NONE)

PSI (PSIREF)
DP

(NONE), ROOTI

FF,EF,TF

Description

Local blade perturbational pitch angle, as defined by Padé filtering tech-
nique, rad

Aerodynamic pitch damping parameter, (ND)

Structural sweep angle projection onto x5~yg plane, rad

Aerodynamic sweep angle projection onto X5-Yg plane, rad
Structural sweep angle projection onto X5=2g plane, rad

Aerodynamic sweep angle projection onto X5=Yg plane, rad

Aerodynamic section sweep angle of midchord measured in edgewise direction,

(+) aft, deg

Difference in sweep angle between midchord and elastic axis, as measured
in local chordwise direction, deg and rad

Alternately, aerodynamic rotor inflow, and eigenvalue (= o 2t iw)

Vector of excitations for the degrees-of-freedom

Angle which the radius measured from the hub to the intersection point of
the section midchord with the section boundary, makes with the preconed
and prelead-lagged feathering axis.

Angle which the radius, measured from the hub to the intersection point of
the section midchord with the section center, makes with the preconed and
prelead-lagged feathering axis.

Air density, lb-sec2/ft®

Alternately, rotor solidity, and real part of eigenvalue

Integrations of Pade pole distributions for lift (and moment)

Alternately, section thickness ratio, (= section thickness/semichord),
(ND), and blade torsion stress, psi

Total local blade inflow angle, radians

Local blade static inflow angle, as defined by Pade filtering technique,
deg or rad

Local blade perturbational inflow angle, as defined by Pade filtering
technique, rad

Generalized Wagner function with compressibility corrections

Blade azimuthal (angular) position, rad and (deg)

Nondimensional time (azimuthal) step, rad

Alternately, frequency of motion, (Hz), and imaginary part of eigenvalue

(Nondimensional) uncoupled natural frequencies of i'th flatwise bending
mode, k'th edgewise bending mode, and j'th torsion mode, respectively

13



LIST OF SYMBOLS AND FORTRAN EQUIVS. (Cont'd)

Symbol FORTRAN Equiv. Description
Q OMEGA , PRPH Rotor rotational frequency or speed (rpm)

Subscripts

( )a Arising from aerodynamic loading

( )B Structurally built-in parameter, or conditions of blade immediately outboarc
of juncture

Effects of dynamic origin

D
( )EA Defined at the elastic axis
( )e Due to elastic deformation
€y Pertaining to particular time step
(g Defined at the blade leading edge
) Defined at the intersection of the section leading edge with the sectien
LEB boundary
() Defined at the intersection of the section midchord with the section
MC center
) B Defined at the intersection of the section midchord with the section
M boundary
Components of vector quantities normal to segment midchord, or about
( )N
local elastic axis
Defined at the blade quarter chord
Oge
( )TE Defined at the blade trailing edge
() Pertaining to unsteady stalled aerodynamic effects
u

Superscripts
(a)

() Pertaining to aerodynamic as opposed to structural

(L Relating to Padé 1ift coefficient

( )<M) Relating to Pade pitching moment coefficient

( )(1),( )(2) Pertain to first and second integrals defining the deflection correction
function, respectively

(') Nondimensionalization by combinations of my, R and/or Q

(*) Differentiation with respect to (Qt)

) Differentiation with respect to (r/R)

(‘) Denotes evaluation at zero co;lective angle

14



STRUCTURAL TWIST AND SWEEP

Principal Assumptions

The aeroelastic analysis presented herein represents a specialization
of the G400 analysis described in References 1 and 3. Since the publication
of the initial documentation (Reference 1), various of the principal assump-
tions enunciated therein have been either relaxed and/or extended. Most
significant are the specific extensions which have been made to account for
the more stringent modeling demands of high performance propellers (e.g. the
prop-fan). Insofar as is practical within the scope of this report, the
principal assumptions used herein are presented below:

1.

The rotor is rotating at a constant angular velocity, has infinite
hub impedance, and is in steady translational flight. The orien-
tation of the rotor in space is specified by appropriate Euler angles
(pitch and roll). The orientation relative to the freestream is
specified by means of a rotor angle-of-attack and a yaw angle.

The elasto-mechanics of the blade are describeable within a beam
theory framework with corrections of a kinematic nature to account

for structural twist and sweep (see Figures 2a and b). The elements
of beam theory analysis pertinent to the development, are the concepts
of an elastic axis, the relationship of elastic bending to elastic
torsion, and the definitions of these two elastic deformations.

The elastic (torsion) axis is defined as the spanwise locus of

shear centers of the two-dimensional blade (beam) sections taken
perpendicular to this spanwise locus. Note that this definition
treats the elastic axis as an abstracted section property, as
contrasted with what one would measure in a bench test of an actual
curved beam. In such a test, the locus of points where bending loads
produce no torsion deflection (at the points of load application)
would conform to the usual interpretation of the "elastic axis."
This axis, however, would be different from the herein usage of

the term to denote the locus of section shear centers. The built-in
structural sweep (elastic axis offset), together with the elastic
bending deflections, defines an elastic axis which is generally a
space curve about which the local torsion deflections must take
place. Thus, as shown in Figure 2a, each spanwise beam segment will
not in general be defined parallel to the other segments. For the
analysis of the beam-like elastic properties, the structurally

swept blade (Figure 2a) is assumed to have its so-defined elastic
axis "straightened out". This artificial straightening defines an
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BEAM PROPERTIES DEFINED
NORMAL TO E.A.

LOCUS OF SHEAR
CENTERS (ELASTIC
AXIS,E.A.)

N
PITCH AXIS

PITCH BEARING

TYPICAL SEGM;;jS&

a) LOCUS OF SHEAR CENTERS DEFINING ELASTIC AXIS

BEAM SECTIONS
REMAIN THE SAME

¥l TYPICAL SEGMENT
5 AFTER STRAIGHTENING

N

-

STRAIGHTENED ELASTIC AXIS
WITH ARC LENGTH MAINTAINED
CONSTANT

b) EQUIVALENT BEAM FOR DEFINING BEAM ELASTOMECHANICS

Figure 2. Basis for Use of Beam Theory for Structurally Swept Blade
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"equivalent beam' whose (straight) elastic axis has the same arc
length as the original swept blade (see Figure 2b).

The blade elasticity is described by the conventional (linear) beam
bending and (nonlinear) bar torsion characteristics, as formulated
by Houbolt and Brooks in Reference 4, for the above defined
"equivalent beam'. It is recognized that various deficiencies
have been identified in these and other earlier formulations,

both with respect to their adequacy for moderate to large bending
deflections (References 5 and 6) and with respect to the proper
modeling of pretwisted beams under tension (References 7-9).
However, there is not yet well established agreement either on the
impact of these deficiencies on propeller elasticity or, more
importantly, on a final proper reformulation. Thus, the continued
use herein of the Houbolt and Brooks elastic formulations must be
viewed as an eventually correctable deficiency of uncertain
importance, to be addressed at some future date.

The elastic bending and torsion deflections are '"small' and
respectively defined in a local sense normal to and along the space
curve as defined by the built-in elastic axis. These deflections
are defined as "small" in the sense that the elastic bending slopes
and torsion deflection angles conform to the usual definition for
"small" angles.

The elastic bending and torsion deflections are describable using
the "uncoupled" normal bending and torsion modes of the "equivalent
beam'". Thus, the deflections in the flatwise and edgewise direc-
tions are respectively given by:

NFM

We = Z % (F1ay (1a)
izl
NEM

Ve : 7)q, (t (1b)

, and the elastic torsion deflections are given by:

NTM
Be= ¥ %, (F) dg;(1)

=1 (1c)
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10.

11.

Uncoupled modes are herein defined to be those beam vibration modes
calculated assuming zero precone, prelag, pitch, twist, center-of-
gravity offset and elastic axis offset. Thus Ywgsr Yy and Yej are
all mutually uncoupled from each other.

Blade elastic bending is defined by the conventional beam bending
differential equations (as developed in Reference 4) wherein the
usual independent spanwise variable is taken to be the arc length
along the elastic axis. Furthermore, these bending differential
equations are defined locally using the loadings locally normal

to the built-in elastic axis. Within this context, explicit elastic
bending-torsion coupling due to structural sweep is omitted in

favor of implicit coupling due to inertial, aerodynamic and
gravitational loadings taken with appropriate sweep related
kinematics.

The blade aerodynamic and structural twist distributions are non-
linear. Additionally, the total (integrated) angle of structural
twist is negligible beyond second order; cases of large local
twist rates over short sections of span are not denied, however.

Local radial foreshortening is defined relative to the equivalent
beam defined in Figure 2. Contributions to radial foreshortening
accrue from (a) the built-in structural sweep, i.e. that which
restores the equivalent beam to the original swept planform (shown
in Figure2a), (b) first order (linear) functions of bending,

arising from built-in structural sweep, (c) second order (nonlinear)
functions of bending each with elastic torsion arising from built-in
structural sweep, and (d) second order functions each of both
flatwise and edgewise bending. Note that this greatly relaxes
principal assumption number 6 given in Reference 1.

The elastic axis is coincident with the feathering (pitch) axis at
the root of the blade. The built-in elastic is furthermore defined
relative to the feathering axis.

The blade flapping and lead-lag degrees—of-freedom used in Reference 1

are assumed to be fixed at the built-in values. Thus, pinned root

conditions are denied. It is to be noted that this assumption pertains
only to the propeller dedicated aeroelastic analysis described herein.

The blade distributions of center—of-gravity, aerodynamic center and
center-of-tension (intersection of flatwise and edgewise neutral axes)
are defined in two dimensional sections normal to the space curve
elastic axis. These distributions are furthermore generally

18



noncoincident with the elastic axis and measured relative to the
elastic axis.

13. The blade sections have finite thicknesswise mass, but generally
the thicknesswise location of the section center-of-gravity away
from the chordwise principal axis is negligible,

The above assumptions are used for the mechanical developments in the
subsections which immediately follow. Assumptions regarding the basic imple-
mentation of aerodynamic sweep are described in the next chapter.

Basic Methodology for Structural Twist

The present aeroelastic theory is characterized to a large extent by the
kinematic modeling selected to describe the bending deflections of a pre-
twisted, prebent beam (elastic axis taken as a space curve). The material
presented draws heavily on the development of Reference 1 subject to above
assumptions 5 through 10.

As shown in Figure 3, the "5" coordinate system is defined by the preconed
and prelead-lagged feathering axis. The "6" coordinate system is defined by
unit vectors taken locally normal to the preswept elastic axis with the y6
direction arbitrarily taken parallel to the XS- y5 plane.

In the presence of only blade pitch angle, &, the "5" and "6" coordinate
systems would be the same and the resulting "S5" coordinate system deflections
would be simple trigonometric resolutions of the flatwise and edgewise
deflections as given by Equations (la) and (1b). With the addition of
(arbitrary) structural twist, however, a simple trigonometric resolution
transformation of flatwise and edgewise deflections is incapable of satisfying
the beam "force'" boundary conditions at the blade tip and an "integrated"
trigonometric transformation is required.

As is shown in Reference 1, the required integrated effect can be
achieved by means of a trigonometric resolution transformation not on
deflections, but instead on the second spanwise derivatives of the deflection,
i.e. the curvatures:

1 _n .
Yo = Ve COSO-W, sin® (2a)
- — 1

Zg = Ve SIN® + We COSO (2b)
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Figure 3. Schematics of the “5” and “6” Coordinate Systems
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This basic coordinate system transformation has the advantage that the
aforementioned boundary conditions are always satisfied. In of themselves,
however, trigonometric resolutions of curvatures are not directly useful for
defining the blade kinematics. Instead, they serve as a starting point for
deriving such a deflection based transformation. The required blade kinematic
coordinate system transformation for deflections can then be derived from
Equations (2) using integrations by parts and invocation of assumption 8.
While the details of this integration procedure is straightforward, it is
sufficiently tedious to be inappropriate to the scope of the present report.
The integration yields a trigonometric resolution coordinate transformation
in the usual form, as given in Reference 4 and elsewhere in the literature,
but with the addition of various "deflection correction" functions due to
twist:

Y, (Ve +Av-AVCOS® — (We—Aw-AWsin® + 0@ (3a)
Zg = (Ve + AV - AV)SING® + (We— Aw - AWIC0sO + 0(8') (3b)

where the underlined terms are, by assumption, negligible and where the
deflection correction functions are defined by the following expressions:

first order in twist:

7 f ol
Bv= j; ©'we dF + L L '@ we 0, 0 (4a)

7 7N
aw- j;®'V.d?. +[ [: @'vedrdf (4b)

second order in twist:

7 L/
Av: L’d Awdr, + f L 'O'Aumlﬁzdﬁ (5a)

r A /
aw= [[0'ave, + L'L ' 0.0vi2) g7, o, (5b)
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It is to be noted that the total twist rate, 69; contains the built-in
twist, eh, and the time dependent elastic deflection, 6; (= YB . qe,). Thus,
the deflection correction functions, Av, Aw, AV, and AW, nominglly aontain
both linear and nonlinear combinations of the modal time variables (qwi, qVk’
and qg,). Specifically, the linear ones involve the built-in twist angle
and arg denoted with a "B" subscript. The nonlinear combinations involve
the elastic twist angle and hence, are proportional to the product of qej
with either q, or q,, . Herein, the products qg .qwi and qq,-9q are re=
tained only in the Av and Aw (first order) corregtion functidns and are
denoted with an "e" subscript. The AV and AW (second order) correction
terms retain only the contributions due to built-in twist rate, eB, and
hence, are strictly linear. Thus, the deflection correction functions de-
fined generally in Equation (4) are given specifically as follows:

first order in twist:

Av = Avg + Avg (6a)

Aw:= Awg + Awg

(6b)
where:
NFM
AV,=E' AV" q" (7)
NFM NTM
Ove=2 L Ave:QwiQg, (8
isg 3l } [}
NEM
Awgz 2 Aw €))
" & 8, 9w,
NEM NTM
AW.: z 2 Aﬁk' q'u%, (10)
L L) ) )
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second order in twist:

AV = Avg (11a)
AW = AWy (11b)
where:
AVg= :ZE:‘ &V, Ay, (12)
AWg: szAw,,i Qw; (13)
izl

Additional deflection correction functions are defined with the consideration
of structural sweep given in the following subsection.

Kinematic Representation for Structural Sweep

Approximations for Small Sweep

Structural sweep is defined in a general sense wherein both chordwise

and thickness offsets of the built~in elastic axis, y and z ’
10 10
EA EA

respectively, are admitted (see Figure 3). Within the context of the material
in the preceeding subsection an approximation to the effects of structural
sweep, for "small" values, can be obtained heuristically by considering the
structural sweep to be '"pre-bends" in the elastic axis. Within this context,
the deflection correction functions defined by Equations (4) and (5) would

be modified by the following substitutions:

/ (14a)
yw-'l QWi —_— ZIOEA

/ /
Yvk qVk —/ Y0 EA
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where only those terms involving the elastic modal variables would be
retained. For example, those terms involving only built-in twist and
built-in sweep would be omitted. Thus, for small structural sweep
Equations (6) and (11) would be modified as follows:

Av ——=Av+ Avg,

Aw ——= Aw+ Awg,

O e OV + 5V, (14b)
AW ——= AW + Awt.
where:
Avg, AvEAj
dwgy | Mo Bwg,,
~ = 1 9, EA; (15)
E‘ "' NEA.
J ]
AWEg, Aw“j

and where:

. - LA -
AvEAj -'[0 rajleE‘ drI +I:L 70, ZIOEA d%@; (16)
Aw =f;r’ o7 + ?f?'ra' | df, O
EAj " Jo 6 Yoga o 8 Yog, M2H (17)
7 '
e [0 i [ o0 as
) ) o )
oW, 'f'O’Aw i+ [ "ol ave? a
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Coordinate Transformation Appropriate for Large Sweep

For the general case of moderate to large structural sweep, the material
in the preceeding subsection is inappropriate, but serves as an introduction
to the material which follows. A successful modeling of structural sweep must
account for the fact that the sweep angles defining elastic axis offset orien-
tation are Euler angles and must be carefully defined.

Inplane and Out-of-plane Position Vector Components
The general modeling of the blade y_ and z_ kinematics due to combined
structural twist and sweep is accomplishéd in tge following steps:

1. The elastic axis of the "equivalent beam" described in an above
subsection is "distorted" back to the original planform defined by the
built-in structural sweep and segment arc length distributions.

This step essentially defines the position in space of the elastic
axis space curve. This positioning requires the x s Y. and z_ offset
distances of the centers of the segments as well a3 projections onto

the xs-y5 and xs—z5 planes of the swept elastic axis line segments,

These projections define the sweep angle distributions, Ae and Af ’
as- shown in Figure 4, 5 5

2, The orientations of the elastic axis line segments define the local
"6" coordinate system. x_  is defined parallel to the axis of the
elastic axis line segment; y6 is defined parallel to the xs-y5

plane, (+) in leading edge direction; 26 is orthogonal to x6 and yg, (+)

in the normally positive thrusting motion. It should be stressed
that the result of step 1 is to produce, in addition to the inplane
and out-of-plane offsets (Ay5 and AZS) of the elastic axis from the

(reference) X, pitch axis, a radial foreshortening (Axs) due to the

constancy of the total arc length of the elastic axis. Mathematically,
this Ax5 kinematic foreshortening is modeled differently and separately

from the Ay5 and Az_ kinematic modeling.

5
3. The blade segments of the blade configuration resulting from steps 1
and 2 are then pitched and twisted about their respective elastic
axis line segments (x_ axis) to restore the blade back to its original
built-in, but undeflected position. The pitch and twist angles for
each segment are defined relative to the Y6 axis,

25
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Figure 4. Euler Angles Defining Structural Sweep Transformation and Section Pitch
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4. The blade is then elastically deflected in torsion about the built-in
space curve elastic axis to define a first set of "small" incremental

y5 and 25 deflections. This first set of small incremental deflections

is governed by Equations (15) through (19).

5. The blade is then elastically deflected in flatwise and edgewise
bending (in the presence of the torsion deflection) to define a
second set of small incremental deflections. This second set of
incremental deflections is measured in the "6" coordinate system
and is governed by the basic deflection transformations defined by
Equations (3) through (5).

6. The second set of small incremental "6" coordinate system deflections
defined in step 5 is transformed to the "5" coordinate system using
a Euler angle transformation derived from sweep angle projections
A and A_ , discussed in above step 1.
®s £

7. The results of steps 1, 4 and 6 are combined to define the y5 and z5

position vector components. These results are summarized by the
development which follows.

First, the sweep angle projection distributions are defined using the
built-in elastic axis line segment changes per segment length, the (invariant)

segment arc lengths, Ar, together with changes to the projection angles caused
by elastic torsion deflection:

- a\? / / / /
csin! {- _ (2) (2) (2) @/ .
Meg® sin { —€A [(Avmj — OVea[)cos® + (Awgy; + AW, )sm@]q&,} (20)

. fAz / ]
Ay, = sin '{ —zfﬂ + [—(Awn‘j” + AW:A?’I) cos® +(Avg.‘f"- AVEA;Z")S'O@] %j} (21)

where Ay5 and A%2; are the built-in changes per segment length., For
EA EA

consistency with the definitions used for other previously defined radial
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distributions these spanwise variable quantities are considered to be "derived"
quantities calculated from the corresponding quantities defined in the
chordwise and thicknesswise directions, Ay and Az , respectively.

10 10

EA EA

In practice, however, the "5" coordinate system quantities are the more
accurately known and the "10" coordinate system quantities are derived using
the "5" quantities according to:

Byioga OYsga cosBy + AZgg, sinf, (22a)
Bz, "~ AySEA sinf8p + Azsncosa, (22b)
Accordingly, Aylo and Az10 are input to the program and Ays and
EA EA EA
Az are calculated internally using the inverse transformation of Equations
EA

(22).

The coordinate system transformation relating the pitch axis "5
coordinate system with the swept ("6") coordinate system makes use of the
sweep angle projections given in Equations (20) and (21):

{xs} z [TAs] {xs} (23)

{"5} : [as”] {"‘} - [ras”] {xq} (24)
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[ h
X ~sin A‘s smA,s
o
[ras] = | “cosny, cosliy
(25)
- Xsinlfg  sinAggSinieg
Cos Af
COSA15 COSA’S L) ]
where:
X= V- sin2heq - sin?A (26)
Equations (3), (15) through (19), (22), and (24) through (26)
can then be combined to yield the required expressions for inplane and
out-of-plane displacement:
Zs Yiog , Sin G + Z10g, COS 68
NTM (Avnj- Avg‘j)COS @+ (Aw“j + Awg,j)sin(@
+
=t (AVEAj— Avg‘j)Sin ® -~ (AwEAj + AWEAj)C05® e]
(27)

(o]
+ [E] [TAS-'] (vg+ Av - AV) COSO ~ (we — Aw - AW)Sin ©

(Ve + Av- AV)SIN® +(wq — Aw -~ AW)Cos ®

[E]=[§§,?] (28)
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and where Vg we, Av, Aw, AV, AW are linear and nonlinear combinations of

qQ ,q and q_ , as per Equations (6) through (14).
W, Vi ej

The modeling of the radial, x_, kinematics is accomplished in

5’
accordance with assumptions 3 and 9. The basis of the radial position

modeling is the assumption of arc length constancy for each blade segment.
Figure 5 presents a pictorial representation for a typical segment of the steps

followed in this modeling process:

1. The elastic axis of the "equivalent beam" segment is rotated to the
built-in swept positions defined by the projection sweep angles,
Ae and Af » (given by Equations (20) and (21), with qe = Q).
5 5 ]
Theocosine fogeshortening that results from this step is the
built-in (constant) value and, for each segment, this "first"
foreshortening is referred to as (dAx)l.

2. The elastic axis orientation sweep projection angles are modified
due to the elastic torsion deflections, in accordance with Equations
(20) and (21).

3. The results of step 2 (with the q6 dependency linearized) are
3
combined with the elastic bending deflections, Y6 and P to
e e
produce the "second" foreshortening referred to as (dAx)z, as shown

in Figure 5. This second foreshortening contribution is linear in

the bending deflection variables, qw and qv but contains nonlinear
i k

(quadratic) combinations of these variables with the torsion

deflection,qej.

4. Using the built-in projection sweep angles, Ae and Af , the cosine

5 5
o (o}

foreshortening due to bending away from the undeflected elastic axis
position is the "third" contribution to the foreshortening and is
referred to as (dAax),_. This third foreshortening contribution is
nonlinear in both the bending deflection variables, qw and qv .

i k
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(v)(zg) —= —(dax),

) ' T --——(dAx)2
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SWEEP,(A ey ) » (Ag )

dr

Figure 5. Contributions to Incremental Radial Foreshortening Due to Sweep and
Elastic Deformations
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5. The results of steps 1 through 4 define the total incremental fore-
shortening over an arbitrary blade segment, (dAx). The total x
deflection for any segment is obtained by integrating the
increments inboard of that location. These steps are summarized
by the development given below:

5

Built-in Contribution

Reference to Figure 5 gives

(dAX)l s dr-m : d'- \/drz- Ay%EA- AZ%EA (29)

z d’["\/"(Ahon /13r)2--(AZ|oE“/Ar)2 ]

The second foreshortening contribution is obtained by taking components
of the bending deflection in the x5 direction:

Al al
(dax), = dr[SinAfs cosA eszse - sinA escosAfs yﬁe] (30)

where the ( °) superscript denotes evaluation with zero collective angle since
foreshortening relative to the pitch axis is invariant with collective angle.
Each of the trigonometric functions of the sweep angle projections is then
linearized with respect to qq as are the bending shapes,

3
Yo and 26 . The details of this linearization are straightforward, but

e e
sufficiently tedious to be beyond the intent of this report. After this

operation, Equation (3) can be rewritten as:

(dax), = [d(DUEAF;)- qu, + A(DUEAEY)- ay, 31

+ d(UELSFT;;) - Qw;qg; * d(UELSETkj)- q,,kqgj]
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The third foreshortening contribution is obtained by calculating the
cosine foreshortening and taking components in the x5 direction:

(dax)y = t:osAe‘,,o COSA{SO [I—Jl- ve . — we ] dr
(32)

o 2
S °°SA°50 cos Mg, - % (veZ + we'“) dr

. - | 1y, !
7+ (dAx)y = cos heg, cosheg - E[Yvk Yvm v Qum * T r"‘tlxq“’iq"n]d' (33)

where summations over i, k, m and n are implied.

Combination of Contributions

All of the three contributions to the incremental radial position
deflection must be integrated:

x5n= 'n‘Uen (34)

where r is the radial location of the nth segment of the "equivalent beam"

and is the summation of segment arc-lengths up to the center of the nth segment,
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and where
n
Uen = fo [(dAx),+(dAx)2+(dAx)3] (35)
Symbolically, ue is given by:
ue = (DUEAO) + (DUEAF-I)qwi
+ (DUEAEY) - ay,

+ (UELSETkj) q"kq"; + (UELSFTij) q‘"iqﬂj (36)

| |
3 (UELASEkm)qquvm + < (UELASFi;) aw,aw,

where variation in all terms with radial station is implied.
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Torsion Excitation for Elastic Axis
As A Space Curve

As given in Reference 1, and as recognized elsewhere in the literature,

the torsion differential equation is comprised of three basic parts.
first part consists of the usual elastic stiffening terms, and the second
consists of combinations of distributed moment loadings.
the wholly nonlinear torsion loadings accruing from distributed force

loadings acting on moment arms provided by curvature in the elastic axis.

As given in Reference 1, the torsion equation is given by:

' 1
[6u6¢ + @IGT + 2 E8,0'~ 95218'- E8,65ve" |
®

\

Y

elastic stiffening

: [- Ug ™ yéqu-. zéqu]@

\ J
Yo

moment loadings

— 1 I
1) / -
+ {yS Iy {25' j:l pls(rz)drz ‘[ﬁ pzs(rz)dr2+ q,s(n)] dr'
|

s | :
= a1 [ [ mge e [ Pl - aad)] o}

= \_

curvatures functions of force loadings
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In Reference 1, the curvatures used in the (nonlinear) third portion
of the torsion equation were assumed to arise entirely from the elastic bending
deflections, vg and wg, as per Equation (2). As such, it can be shown
that the nonlinear excitation term in Equation (37) can be reduced to the
familiar difference of bending stiffness, AEI ( = EIz - EIy), term:

{...}@ = [(EIZ - EIy) Vélwe” _ (eAT + EBZ(GIB + —é—eel)eel)WQH] (38)

This method for including the effect is attractive principally because
of its simplicity and has been used to good advantage by numerous investiga-
tors. Three difficulties exist with this method of implementation, however.
The first difficulty relates to the fact that the implementation of Equation
(38) is based on a "mode deflection'" description of internal bending moment.
The difficulty with a mode deflection formulation per se is two-fold.
Studies of the characteristics of "mode deflection" (References 10 and 11)
have established that convergence to accurate representations of internal
bending moment is often not assured with a small number of modes. This
accuracy problem is then compounded by the fact that the two components
of this nonlinear excitation are subtractive. This is evidenced by the
differencing of the section bending stiffnesses as indicated above.

A second difficulty with using the AEI method relates to the assumed
space curve character of the elastic axis. As such, torsion deflections
are seen to contribute to inplane and out-of-plane deflections in the
presence of bending (see Equations (8) and (10)). Thus, an analogous
nonlinear excitation effect exists in both the flatwise and edgewise bending
equations. In the framework of the G400 analysis, these nonlinear excita-
tions in the bending equations are most practically implemented using a
"force integration'" approach. Consequently, the use of a AEI mode deflection
implementation in the torsion equation together with a force integration
implementation in the bending equations results in a (coupled) modal mass
matrix which is generally nonsymmetric. A nonsymmetric mass matrix is not
intrinsically a weakness for isolated rotor simulation and has been
successfully used for years in that mode. However, the potential exists
for spurious divergent response conditions caused by an inertia matrix
becoming nonpositive-definite due to this deflection dependent nonsymmetry.

The third difficulty with the Equation (38) formulation is that it is
difficult to include the built-in curvature due to structural sweep.
Equation (38) requires curvature information which is not generally available
for the built-in geometry

36



Because of these difficulties, the conventional AEI approach of
Equation (38) was abondoned in favor of a "force integration" approach.
Accordingly, the Galerkin approach is applied to the nonlinear excitation
term and integration by parts is used to achieve an intermediary step
needed to eliminate the explicit curvature terms:

[ {-lgre [on, L1 s

rrh " ' T "
+ Yo 2« drodr + (2sT+Qy ) | 7% ¥ dr,
l’,,st;eiszn 5 ’51;9,5'

(39)

T
-y T— q25)fo )’ajzgdr,}df

Since this term represents the nonlinear effects, it is reasomable to
use a zeroth order approximation to the curvature terms wherein the structural
sweep in assumed to be "small". With this assumption, all the integrals in
Equation (39) can be evaluated using the deflection correction functions
defined in the above subsections. Thus, Equation (39) becomes:

j: yej {-.. }@ dr = ‘C{riaj [py5c°s® + pzssin@]

- I‘zaj [pzscos(@ - Pyssin®] (40)

!
+ f;g [T(we' - Aw?'- Aw'@

J

) + qyscos® + qzssin®]

2y!
())

!
- f;ej [T(vé+ a'® -av'?) - qzscos® + qyssin@)]} dr
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where:

Ny = 7 - - - -

L
L]

n%

® . ! ! / 2) (
rzaj rej (Ve + y'OEA + Av(Z)- AV( ) = (AwEAi

J

= Yej(we'+ Zioga~ AW

(2

2y 2y

—Aaw ) - (Av

EAi

2

% - —~ (Awga. + AWg,.)
j gj(ve+y|oEA+ Av - Av) - (& EA EA;

2y
- AVEA)j )

1 !
Yy AwEA;Z’ )

(41a)

(41b)

(41c)

(414)

Equation (40) represents the required form of the "force integration
implementation of the nonlinear torsion excitation term.
subsection, three observations can be made of the above formulation:

1.

To conclude this

Equations (41) all reduce to zero for zero structural sweep and
zero elastic deflection, as would be expected from the behavior of

Equation (38).
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2'

In Equation (40), the terms multiplying the nonlinear torsion
weighting functions (I'ye ,+++) are actually the force and
h|

momert loadings defined for the linear excitations of the
bending equations. The nonlinear torsion weighting functions,
Equations (41), thus serve in effect, as the virtual deflection
functions arising from torsion deflections appropriate to the
bending generalized loads.

The validity of the force integration approach is substantiated

by the fact that the resulting terms in the torsion equation which
represent rows of the inertia matrix (reflecting the integration
of inertia forces) produce complete mass matrix symmetry and
consequently insure positive-definiteness.
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ATRODYNAMIC SWEEP

Principal Assumptions

The unsteady airloads formulation incorporated in the G400PROP analysis
is based on aerodynamic concepts originally developed for helicopter rotor

blades.

A characteristic of the aerodynamics of helicopter rotor blades

is the generally large variability in local air velocities due to a
combination of rotation with translational motion within the plane of the

rotor.

As a result, the aerodynamic formulations which have evolved are

typically of a "strip theory'" type with varying degrees of refinement to
account for unsteady and swept flow effects. Such refinements typically
are two-dimensional and applied in a heuristic manner based on the strip
theory assumption., This is generally the approach followed herein.

In addition to the basic strip theory assumption, the following specific
sweep related assumptions are made.

1.

The local aerodynamic section sweep angle is defined by the angle
the local airflow direction makes with the blade section taken normal

to the midchord line (see Fig. 6).

The section angle-of-attack is defined by the inflow and pitch
angles measured within the section taken normal to the midchord
line.

For those cases wherein the ''quasi-static" option is invoked,

the effective angle-of-attack is defined (using above assumption 2)
as the sum of the pitch and inflow angles. For this case, inflow
angle is evaluated using local flow velocities at the 3/4 chord
control point,

For those cases wherein either of the specific, more advanced
unsteady methods of the next two sections are invoked, the angle-
of-attack or plunge variables are also defined using above
assumption 2, but with inflow angle evaluation at the 1/4 chord
control point.

Airfoil drag is divided into two vectorial components (pressure drag,
and skin friction drag) which are vectorially added to give the

total drag. Pressure drag is that generally associated with compres-
sibility and 1lift, and locally acts in the direction normal to
midchord line, whereas skin-friction drag acts in the direction

of the local flow velocity.
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6. Skin friction drag varies with span (and hence Mach number) but
is invariant with angle-of-attack.

7. Lift, pitching moment, and pressure drag coefficients are determined
by the angle-of-attack and Mach number measured in the section
normal to the midchord line. The 1lift, pitching moment, and pressure
drag are determined by their so-defined coefficients and the
dynamic pressure based on the velocity components normal to the
midchord line.

8. Skin friction drag is determined by the Mach number and dynamic
pressure based upon the total vector sum of all components of the

local total flow.

These assumptions form the basis of the development which follows.

Basic Modeling Characteristics

Aerodynamic Sweep Angle Projections

As was developed in the previous section, the appropriate axis for
defining structural sweep is the elastic axis. The appropriate axis for
defining aerodynamic sweep, however, is, by assumption 1, the locus of
midchords. Therefore, the aerodynamic sweep angles are defined as:

KL = Moy + (cOS@ AA-Y},) 42)

(A .
Af; = Afs‘" (-sin® AA+ l'se) (43)

where AA is the difference in sweep angle between the midchord and the
elastic axis, as measured in the local chordwise direction, and can reasonably
be assumed to be a "small" angle. Since the elastic bending slopes of
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yé and zé » are also assumed to be small, the small angle assumption can
e e
safely be used on the parenthetical terms in Equations (42) and (43).

Similar to the coordinate system transformation developed in the
previous section (Equations (23) through (26)) and pictorially defined in
Figure 4, a coordinate system transformation can be formulated for aerodynamic
sweep. In particular, such an aerodynamic sweep transformation is needed
to relate velocity and loading components in the "5" coordinate system to
those quantities in the "8" coordinate systems. The "8" coordinate system
is defined similarly to the "6" coordinate system but is additionally
displaced by the elastic bending deflections, and is rotated relative to
the "5" coordinate system by the aerodynamic sweep angles,

A(A) and AEA)

e
5 5

vector decompositions shown in Figure 7, the following definitions are made

for an arbitrary spanwise element:

» given by Equations (42) and (43), respectively. Using the

fa_iunit vector along the span of the midchord of the blade element

n. Zunit vector perpendicular to ﬁl and parallel to the xs-y5 plane,
positive forward

%, = unit vector mutually perpendicular to both ﬁi

3 and 3}, righthand rule.

Similar to Equation (24) the following relationship can be written:

Lt T '
R < (A) >

{3} e {7} ”
N3 k

where the elements of [TAS(A)] are defined using Equations (25) and (26),
but with the aerodynamic sweep angles.

Velocity Decompositions

As shown in Figure 7, the local velocity vector including only environ~-
mental effects (i.e., neglecting blade motion) can be expressed in either
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coordinate system:

us= Unsi - U75T+ Upsk

(45)
= URoﬁl - U'ronz + Upol13

Use of the above coordinate system transformation together with the local
velocities due to blade motion, v and v , yields the following useful
ferm: e %6

Ur Urg vO
—ur p = [Tas®) { 'UTs} - Yee (46)
Up

v
Up Z6e

Note the UR s UT , and UP can include not only the components due to
5 5 5

axial flow and variable inflow distortion, as discussed in a later section,

but any perturbation which might accrue from hub motion, Consideration of

such hub motion is presently outside the scope of the study, however.

Other relationships which are needed to formulate the airloading distri-
bution are the magnitude of the total velocity, U, and the component normal
to the midchord, UN:

U = (sgn uy) \[u$ +U§ + u% (47)

Un= (sgnut)/ué + ud (48)
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Airload Distributions

Using standard strip theory techniques, the local lift, pitching moment,
pressure drag, and skin friction drag distributions can, respectively, be
written as:

L= Pic - Brug c, (an, My) (49a)
Mx= PZC2ArUR Cme,q (@N,MN) (49b)
Dp = p-z-cAruﬁ Cdp(ay, My) (49¢)
Ds= P3CAr u"’cds(M) (49d)
where:
ay = 6y + tan~'(up/Ur) (50)
My= Up /00 (51)
M= U/0 ~ (52)
Cap * Cglan,My) - Cd,("‘u) (53)

The pitch angle seen in the "8" coordinate system, 6y, is obtained from
the nominal pitch angles with consideration of the integrated effect of the
cosine components:
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NTM
j=1

where:

= r/ (A) (&)
7ej‘ [rgj+j; Y, (cos A (r,)-l)dr,]cosA 55

r
+ [,/; 7'9'j sin A(”(r.)dr,]sinA“’

and where:

. Ay
AA) = gin™! —lZO?E_A + AA (56)

The airload distributions given by Equations (49) are then resolved
to the "8" coordinate system using the components of the inflow velocity:

p°Y3 : -Pchr[UN(cdeT - CyUp) +UUTCds] (58)
paza=PECAr [Un(CLUT+ Cdep)+UUpCds] (59)
2 * )

q"*s = Pé‘c"’Ar[Un Cmc/a— UK@] *+ Yioc/a (poz’cose - payasme) (60)
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and where:

( (o] : using advanced unsteady airloads
option
(61)
K= % c(sgn v) < |_%_ Y10¢/a : forward flow, quasi-static
4 option
\ %Ylo p : reversed flow, quasi-static
‘ c/e

option

Above Equations (57) through (60) define the airload components
with directions aligned with the deflected blade segments. The appropriate
airloads needed are those defined in the "6", or undeflected coordinate

system:
- / . !
pcxs' pox8 + pOYQ (cos® AA"Yse) - polg(— SiN® + ZSC) (62)
- - _v/
p(,y6 %Vs po;,(cos ®AA - yg) (63)

o+ Poxgl~Sin02A +2¢,) (64)

Qg doxg (65)
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Remarks Concerning Application

Above Equations (63) through (65) define the most general information
of the airload distributions to be used in the bending equations and in the
nonlinear excitation term of the torsion equation (see Equation (41)).

These expressions for airloadings are very nonlinear and, in the above form,
are only suitable for utilization in the time-history solution. For eigen-
solution purposes, they must be completely expanded to yield all explicit
linearized perturbations of the modal variables and their derivatives,

*
8q , 69 , 8q, , 8q ... The details of this perturbational expansion are
\J v 6 w
i k 3 i
straightforward, but sufficiently tedious to warrant excluding them from the
present report.
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UNSTEADY STALLED AIRLOADS

A detailed analysis of dynamic stall experiments has led to a semi-
analytic methodology characterized by a set of relatively compact analytical
expressions, called synthesized unsteady airfoil data, which accurately
describe in the time-domain the unsteady aerodynamic characteristics of
stalled airfoils (Reference 12). Under the present study, the unsteady
stalled airloads methodology was expanded for propeller applications by
synthesizing similar unsteady loops at subsonic Mach numbers which are
higher, more relevant than those used in the earlier study. More specifically,
the high Mach number data contained in References 13 and 14 were reduced to
synthesized form within the established Reference 12 framework.

Review of Basic Methodology

Dynamic Stall Model

The analytical model of dynamic stall, described herein, includes the
main physical features of the dynamic stall phenomenon as observed in
oscillationing airfoil tests., A brief description of dynamic stall events
is given below,

When an airfoil experiences an unsteady increase in angle-of-attack
beyond the static stall angle, a vortex starts to grow near the leading edge
region, As the angle continues to increase, the vortex detaches from the
leading edge and is convected downstream near the surface. These events are
shown schematically in Figure 8. The suction associated with the vortex
normally causes an initial increase in 1ift. The magnitude of the increase
depends on the strength of the vortex and its distance from the surface.

The streamwise movement of the vortex depends on the airfoil shape and the
pitch rate, The relative distance between the vortex and the airfoil varies
according to the kinematics of the airfoil. That is, it depends on charac-
teristics such as the pitch rate and the instantaneous angle-of-attack,

As the vortex leaves the trailing edge, a peak negative pitching moment is
obtained. The airfoil then remains stalled until the angle-of-attack drops
sufficiently so that reattachment of the flow can occur. The present method
incorporates all of these events. For example, the strength of the vortex
is made a function of the angle when the vortex leaves the leading edge
(moment stall angle). The higher the moment stall angle, the higher the
strength of the vortex.
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Parameters Influencing Dynamic Stall

The unsteady lift, drag, and pitching moment coefficients of the airfoils
obtained from the two-dimensional oscillating airfoil tests show a large
degree of hysteresis when plotted as functions of angle-of-attack,
particularly when the reduced frequency and the maximum angle-of-attack are
sufficiently high, Figures 9a, 9b, and 9c show an example of typical
loop data obtained from the oscillating airfoil test. The amount of
hysteresis and the shape of the loops vary in a highly nonlinear fashion with
such test parameters as amplitude, mean angle, and reduced frequency.

The results of the oscillation airfoil tests clearly indicate that the
dynamic characteristics of an airfoil depend on the following main parameters:
(1) airfoil shape and sweep; (2) Mach number; (3) Reynolds number; (4) reduced
frequency, k; (5) oscillation amplitude, a ; and (6) mean angle-of-attack, ao.

The first three of these parameters affect both the static and the
dynamic characteristics of the airfoil, while the last three parameters
represent purely dynamic parameters. Since most rotor aeroelastic analyses
employ time-history solution techniques for computation of the aerodynamic
loading acting on the rotor blades, frequency domain parameters such as reduced
frequency or amplitude, etc., are inappropriate for use in these time domain
simulations. Moreover, for arbitrary motion it is difficult to describe the
reduced frequency, the amplitude of oscillation, or the mean angle-of-attack
of a rotor blade section in a precise manner. As a result, an alternative
set of dynamic parameters, which are appropriate for the time domain simula-
tions, is defined. The parameters replacing k, a, and ¢ in the present method
are: (4) the instantaneous angle-of-attack, a; (5) the Sondimensional
pitch rate, A; and (6) the unsteady decay parameter, o , which accounts for
the time history effects of the change in @, and is baged upon the Wagner
function.

For the sinusoidally oscillating airfoil, these three parameters can be
eusily expressed in terms of the reduced frequency, the amplitude, and the
mean angle-of-attack. Also, they can be easily evaluated for rotor blade
sections in a stepwise manner and are very convenient to use for the prediction
of the onset of dynamic stall and for the determination of the unsteady airloads.
Thus, the present method determines, through the synthesization process,
the effect of these selected parameters ( a, A, aw) on the dynamic stall

characteristics of the airfoils by utilizing the data from the oscillating
airfoil tests. The synthesization process used herein essentially involves
curve-fitting of the test loop data to the prescribed analytical expressions,
with the objective of determining the unknown parameters or coefficients
embedded in the analytical expressions. The analytical expressions are
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obtained mostly by mathematical or empirical means and in general they
represent simple quantitative approximations to the various observed
physical features of the dynamic stall phenomenon,

Definition of the Unsteady Decay Parameter, aw

For a two-dimensional airfoil going through an arbitrary change in
angle-of-attack, one can describe an instantaneous effective angle-of-attack,
o g’ by using Duhamel's integral (Reference 10) as given below:

s
ag (s)=alo) ¢, (s,Mm) +_£ %—:_—B ¢ (-0, M do (66)

where ©(0) corresponds to the initial angle~of-attack, M represents Mach
number, ¢C(S,M) is the response to step change in o (a compressibility

corrected form of the Wagner function), and s is the nondimensional time
as given by:

t
s:% _[; udt, (67)

The unsteady decay parameter, o , to be used extensively in the present
w

method, is defined as follows:

a, =als)-ag (s) (68)

The Gw parameter physically represents the difference between the instan-
taneous angle, @ and the effective angle, aE, and therefore accounts for the
time-history effects of the change in o, This physical description of aw
is valid for attached flow conditions only. 1In the present method, the aw

parameter is most useful for predicting the onset of dynamic stall, and
for convenience, it is also used to describe approximately the unsteady
coefficients after the stall.
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The effects of compressibility are incorporated in the definitions of
@, by the use of the general or compressible Wagner function (see also

Reference 15) obtained from the following approximate relationship

(69)

- -M2 - -u2
$c (s,M)=[l.O-O.l65e 0.04558 (1-M%) _5 3357035 (I-M ’] 1/ 1-m2

Computation of Dynamic Parameters

For the sinusoidally oscillating airfoil, where the motion of the airfoil
is completely known, the parameters o, A, and aw can be obtained analyticaly

as given below:

a= 8 sin ks (70)
A= k& cos ks (71)
a, =7, (k,M) k@ cos ks +y, (k,M) & sin ks (72)

where k, s, and M represent reduced frequency, nondimensional time, and
Mach number, respectively. The Yl and Yz functions are described by:

0.165 (1-M2)(0.0455) ,0:3350U-M )(0.3)

(73)
k2 +(1-M2)2 (0.0455° k2 + (1-M2)%(0.3)2

7, (k,M)=

0.l65k2 + O.335k2
k2+ (1-M2)2 (0.0455)2 k2 +(1-M2)2 (0.3)2

Y2 (kr M)= (74)
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In contrast to the closed form evaluations obtainable for sinusoidal
motion, numerical evaluations of these three section dynamic parameters must

be obtained for arbitrary motion in the time domain.

This is accomplished in

a stepwise manner utilizing the following recursive relationships at (time)

step n:

a, =8, + ¢p

_[36n , 0%y] AV
An* [aw M7 ](As)n

where:
- —u2
xn = xn-' e 0.0455 (1-™m )(AS)n .’.ons‘qn _an_')
2
= - 0.3 (1-M°){As) -
Yy =Y, © n +0.335(a, -a,.)

r4l]
(ashy = 5z (Av)

Here Ay is azimuthal stepsize, Qis rotor speed, c is chord length, and Un

is streamwise velocity.
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The instantaneous angle~of-attack, o is described in the section
normal to the midchord, en and ¢n being the pitch angle and inflow angle,

respectively. The numerical calculation of the nondimensional angle-of-
attack rate, A, poses special problems. The nondimensional time derivative of
pitch angle in Equation (76), 36,/ 9V, may be computed analytically from

the known control angle and elastic torsion response rates, whereas the time
derivative of ¢must be computed using some form of numerical differentiation.
The nominal method suggested in Reference 12 is a backward difference scheme.
However, in some applications, this method was found to give violent numerical
instabilities and an alternate method was required. The alternate method
selected is based on the assumption of a predominantly oscillatory response

at some user selected frequency, W, which typically would be taken as the
dominant blade torsion natural frequency. These two numerical results are
given below:

5 5(1.5%— 2¢n, + 54,_,), @:=0
n

v W COs @ AV 80)
oAV - - @3>0
ono AV (cos@ V-4 - ¢ ),@>

Prediction of Dynamic Stall Events

In the present method it is considered important to accurately
predict three major events associated with dynamic stall, These events,
as shown in Figure 9b, are the stall onset, the vortex at the trailing edge,
and the reattachment. The next section describes the semi-empirical equations
that are used to predict these events,

Onset of Stall

Because the dynamic stall airloads acting on an airfoil are highly
influenced by the leading edge vortex, an accurate prediction of the instant
the vortex breaks away from the leading edge (moment stall point) becomes
very important. The occurrence of moment stall depends on factors such as
Mach number, the airfoil shape and the pitch rate.

Under the conventional quasi-static theory formulation. the stall
is assumed to occur when the effective angle-of-attack reaches the static
stall angle,

aErn: att (81)
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In general, © s is assumed to vary with the airfoil shape, Mach number and
Reynolds number. To some extent, the value of @ also depends on the
criterion followed for stall, 88

Under the present formulation, the relationship represented by
Equation (81) is extended to include dynamic stall effects, and an assumption
is made that at the dynamic stall point, in general, the effective angle of
attack, aEm’ is not only a function of ass’ but also depends on the pitch

rate at stall, Am’ and the instantaneous angle-of-attack at stall. That is,
Agm = F lagg A, Qpp) (82)

The actual functionality F depends on the type of stall and on the criterion
followed for stall. It is assumed that F varies with airfoil shape, Mach
number, and Reynolds number, and can be established empirically. Linearization
of the relationship of Equation (82) with respect to parameters Am and a

Dm
around quasi-steady conditions, &SS(1+€),leads to the following simple
expression for aDm’ the angle at which dynamic moment stall first occurs:

= 83
ayn=li+e+C, A +C 0 )a (83)

wm-wm " SS

Here, aw represents the value of the parameter, o . at the point of

m
moment stall., Thus, instead of the function F, one can determine empirically
the coefficients ¢, CAm’ and Cwm for various Mach numbers, Reynalds numbers,

and airfoils. In Equation (83), the last two terms represent the delay in
dynamic stall when compared with quasi-static stall. Other available methods
(References 15, 16) represent this delay in stall by a constant time delay.
However, Equation (83) is a much more general relationship which predicts the
onset of dynamic stall quite accurately for airfoils experiencing unsteady
motion,

Vortex at Trailing Edge

Normally, after the occurrence of moment stall, there is a significant
increase in negative pitching moment due to the travel of the stall vortex.
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The maximum negative pitching moment occurs when the vortex is near the
trailing edge of the airfoil. For the case shown in Figure 9b the
instant when the vortex leaves the trailing edge is marked by 'TE'.
Preliminary results have ied to the following empirical relationship for
predicting the instant when the vortex leaves the airfoil:

Smt =1.0/(CayApm + Cat @pm) (84)

Here s . is the total nondimensional time for the vortex to travel from
m

the leading edge to the trailing edge. Once again, the coefficients
C  and C vary with Mach number, airfoil shape, sweep, and Reynolds number.
a

A
t t

Reattachment

The instant when the reattachment of the flow occurs is marked in
Figure 9b. Normally, for low Mach numbers (M <0.4) the reattachment occurs
at an angle QRE which is less than the static stall angle. At higher Mach

numbers, where the static stall may be induced by shocks, the reattachment
angle o__ can be higher than the static stall angle, ass. In the present

RE
formulation, a general expression for aRE is assumed and is given by:
QRE:(|‘€ + CAR ADIT\+ CWR Qw")ass (85)

In general, for a given airfoil, the values of CAR and Cw » as used in

R
Equation (85) for reattachment, are quite different from CAm and Cwm used

for stall onset. However, the value of the parameter € is the same in both
of these equations.

This completes the description of all the events associated with dynamic
stall that are required to compute the unsteady stall aerodynamic characteris-
. tics of an airfoil, It should be noted that the present formulation does not
require explicit prediction of so-called 'dynamic lift stall'. Normally a
sudden loss of lift occurs due to increase in the relative distance between
the stall vortex and the airfoil surface. These effects are included
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implicitly in the formulation of the unsteady 1ift coefficient which is
described next,

Unsteady Section Coefficients

Unsteady Lift Coefficient

The unsteady 1lift coefficient, CLu' of an airfoil in the time domain

under the present synthesization is described by the following expressions:

Cu=Cisla-Aa, ~Aap) +0p A0 +AC, 1+ AC2 (86)
Ag, =(P| A+P,a + PS) age (87)
Aa, = 8, ag (88)
2
OC =0, A+Q, a, +03la/agy) +Qq4la/ag) (89)
2 l-e'(Bl'fﬂ)3
AC, =04 8, +Qg A, +0;(apy) z (90)
(B Sm)
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_2ult-tyy)

Sm c (91)
0 a < Qg
8¢ (@pm/agg —1) |1.0 = (s /s,m)2 0<SnSSmt (
o Sm> Smt
(0 a <agg
(@/agg -1 Qge SASQyn
(@pm/Qqg = 1) Tre-Cre Qpe S A<y
\ O as ape

The synthesized unsteady lift coefficient (Equation (86)) has been
expressed as a sum of static CLS at some shifted angle (a..Aal —,\QZ)

plus an incremental 1lift coefficient ( AC__ + ACLZ). The shift in angle

L1l
is given by Equations (87) and (88) and the incremental 1lift coefficient
by Equations (89) and (90). (The quantity aoL in Equation (86) is the

conventional static lift curve slope.) The Ax; shift in angle (Equation (87))

is present even when no stall occurs, and the Acr2 shift in angle

(Equation (88)) is mainly associated with the occurrence of dynamic stall and
subsequent reattachment., Similarly, the & CLl (Equation (89)) represents

essentially the unsteady effects over static CLS for dynamically unstalled
airfoils, and A CL2 (Equation (90)) represents the effects associated with

the dynamic stall events such as vortex formation and reattachment. In fact,
the last term in Equation (90) represents explicitly the suction effects of
the leading edge vortex and equals zero when no vortex exists.
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Thus, Equation (86) is a general expression for unsteady CL even when no

dynamic stall occurs. For unstalled cases, the magnitudes of Acyz and
A CL2 are essentially zero.

The 61 parameter in Equation (90) is an empirically determined
constant and is nominally equal to 0.18, The quantity sm, as described

by Equation (91), represents the nondimensional time measured from the
instant of the occurrence of dynamic moment stall. The unknown parameters

P1 through P3 and Ql through Q7 are determined empirically by means of a

least-squares curve-fitting of Equation (86) with the test data. It should
be noted that most of the terms in Equation (86) are linear in parameters g,
A, and aw.

Unsteady Moment Coefficient

The unsteady pitching moment coefficient, C has been formulated

Mu’
using relationships similar to those for CLu and is described below:

C“U= C“S(Q_Aaz) + oom AOZ + AC"
(94)

ACy=n A+ m, a,+nala/ag) +n, |ay]

(95)
tng 8 +mg Aa, *n, a5 AyS,

Here aom represents the static pitching moment slope at zero angle-of-

attack and it normally equals zero. The last term in Equation (95) represents
the vortex effects. For unstalled airfoils, the last three terms in

Equation (95) are zero. The unknown parameters nl through n7 once more are

determined by the least-square curve-fitting of Equation (94) to the
test data.
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Unsteady Drag Coefficient -

The unsteady drag coefficient, CDu’ appears to vary with the dynamic

parameters in the same way as CM and is described as follows:
u

CDU =CDS(Q-AQZ) +ACD (96)

ACp=R, A + R, Gy, + Rsla/ags) + Re |au|

(97)
+Rg 83 + Rg 8y + Ry 80, + Ry Qpn ApySpm
where :
0 a < ag
5 (a/agg 1) Qgs<a< apnm
= .25 98
> Napm/ass =1) [1.-={Sm/Sms) ] 0< Sy < Smy 98)
o) Sm> Smt
0 a < Qg
2
5. (a’age 1) Qgs<a< Qpm (99)
4 2 25
(@pnfagg =1} [l. =(Sm/Smt) ] 0<Sm<Smt
o Sm > Smt

The last term in Equation (97) represents the effects of the stall
vortex on the unsteady drag. For unstalled conditions, the last four
terms in Equation (97) are essentially equal to zero. Once more, the

unknown parameters Rl through R8

curve-fitting of Equation (97) to the unsteady drag test data.

are computed using the linear least-squares
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Because the higher Mach number unsteady data used to synthesize the
coefficients in the G400PROP code did not include unsteady drag, the
use of unsteady drag is not available to this version of G400.
The description of unsteady drag coefficient given above was included
herein for completeness,

Description of Additional Synthesization

The empirical relationships, for the prediction of stall events
(Equations (83) through (85)) and for the description of unsteady airfoil
characteristics (Equations (86) through (99)), have been established by
utilizing a large number of available oscillatory airfoil test data sets.
Furthermore, by illustrating the excellent correlation between the test
and synthesized results, the generality of these empirical relationships
to adequately represent the effects of variations in Mach number, sweep,
and airfoil shape has been clearly demonstrated (References 12 and 17).
This section describes the similar correlation results obtained under the
present study, which relates mainly to the synthesization of the high
subsonic Mach number data.

Test Data Used for Present Synthesis

The first step in the procedure for synthesis normally involves
preparing a data set consisting of the loop data obtained for an airfoil
at the same Mach number, Reynolds number, and sweep angle., Normally, a
set of fifteen loops, consisting of both unstalled and stalled data, is
found to be sufficient to establish the values of the empirical coefficients.
The second step of the synthesis procedure consists of determining the
empirical coefficients through least-squares fitting. The final step
involves reconstructing the data from the empirical relations and comparing
the synthesized data with test data.

Table I provides a list of all the data sets that were successfully
synthesized under the present study. The data sets listed in Table I were
acquired from two different sources (1) NASA CR-2915 (Reference 13) containing
data sets 1 through 3, and (2) USAAVLABS TR-68-13B (Reference 14) containing
data sets 4 through 7.

Each of the seven data sets represents a unique combination of test
conditions. As a result, the values of the various empirical coefficients
obtained are, in general, different for each of these data sets. Also, it
should be noted that each of these data sets have, in general, a different
static airfoil characteristic associated with them (steady state Ciys C

M?
Cp variation with a).
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TABLE I: TEST DATA SETS USED IN AIRFOIL UNSTEADY STALL SYNTHESIZATION
Data
Set Source | Airfoil [Mach| Reynolds No.| Parameter Range of Test Data Used
No. Ref, No. Type No. x10-6 k o, o
1 13 NLR-1 0.5 6.3 0.07-0.22 0.0-12.5 | 2.5-7.5
2 13 NLR-1 0.6 9.1 0.06-0.18 0.0-12.5 | 2.5-7.5
3 13 NLR-1 0.7 10.1 0.05-0,16 0.0-12.5 | 2.5-7.5
4 14 V0012 0.4 4.8 0.0-0.31 5.0-15.0 | 2.5-7.5
5 14 V0012 0.6 6.2 0.0-0.25 5.0-10.0 | 2.5-7.5
6 14 V2301-158f 0.4 4.8 0.0-0.25 5.0-15.0 | 2.5-7.5
7 14 V2301-158| 0.6 6.2 0.0-0.25 5.0-10.0 | 2.5-7.5
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Comparison of Synthesized Loop Data With Test Data

This subsection discussed the results obtained from the curve-fitting
of Equations (86) and (94) to the test loop data corresponding to lift
coefficient and pitching moment coefficient, respectively. As a typical
case, consider all the lift coefficient loop data contained in data set
number 3 (see Table I). When these loop data are curve fitted to
Equation (86) in a least-squares sense, the values of unknown parameters

Pl through P3 and Ql through Q7 are obtained. When the values of the

Pl through P3 and Ql through Q7 parameters are inserted in Equations (86)

the resulting time domain equation represents the two-dimensional unsteady
1lift coefficient of the NLR-1 airfoil at Mach number 0.7 for essentially
all dynamic conditions.

To illustrate the accuracy of the resulting equation, a sample of the
loop data for this case has been reconstructed from the equations and the
comparisons of these synthesized CL loops with test data are shown in

u

Figure 10a. The differences between the test data and the synthesized are
small and these differences are comparable to test data accuracy.

Similarly, when all the pitching moment coefficient loops contained
in the data set number 3 in Table I are curve-fitted to Equation (94),
the values of unknown parameters n; through ny are obtained, The comparison
of the synthesized C loops with test data is shown in Figure 10b, Once
again, the reconstructed loops match very well with the test data. The
maximum negative CMu is generally predicted accurately for all the stalled

loops.

Similar computations for the six other data sets contained in Table I
have been successfully carried out, Figures 10a through 12b illustrate the
good agreement obtained between the synthesized loop data and the test data
corresponding to the highest Mach number data sets for each of the three
airfoils. These figures correspond to the published data contained in
References 13 and 14 as obtained in the Boeing two-dimensional, variable-
density wind tunnel. It should be noted that Figures 10 through 12 present
only 1lift and pitching moment loops because no drag data were included
in these references.

68



82 sl 8t < L] &-

1

902¢0°= 2
0021°01= vV
08.6°0 = HYINW

2 L1 8 9 4 2 [}

[T AT FNETNY FUEUE TR E

T T "1 17 11T

00ece = )
0080°S = MWW
00S6°Y = NYIMTY

s°e-

| 8lqeL ui £ 'ON 18S ejea g01 x 004 ="y ‘2'0=W
‘oMY 1-HIN ‘ejeq S8l yum sdoo Jusioyjeod 117 paziseyluhs jo uospedwod "egl ainbiy

bap 'YHd IV
(4} ol < ] S- el-
_I_lql-l-l_l.Jl-Jl_l_Jl.quJJJlj 8'l-
]
— ﬂ-@l
]
- O |
-~ 5°0
00280° = » 1
-1 08°t
90£2°01= WYY “
0829°2 = MINTWY b
<~ ¢

[] 9 14 2 0 <~ »-
T T T T T Yy 5 4 20~

[}
s2°0
(1Y)
(930}
80050°= X
8091°
91°5 = dun Y 00°1
8EL°2 = NUIWW
$2*1

a3iNdWOd — ———"viva

<t el S L] s- el-

[rryrr|yrrrypryyrrryrrrr ey

i

08858°= X}
00872 = VW
005P°Z = NYITY

[FTWTE T EUWEE NS W Saw

[ 300 |
A -7 90£8°2 = JW
09EP°2 = MUY

[ M}

&1

»e

9'8

80

"t

n‘b

69



[ 14 st | 14 ] S- -
].]I—Jlda%jlﬂj
0o =y
0021 °0l= AW 1
W6y - W ]
<
r
-

et a! 12 2 ] 2-

o T T T 71

]

st'e-

$8°9-

[T 0]

90° 8-

»9°0-

20°6-

2o'e

I ejqe uj € "ON 18S Bjeq o01 X 0’k = Y4 ‘0= W ‘lopy 1-4IN
‘ejeq 1501 yum sdoo jyueldyyjeo) Juswol Buiysnud peziseyiuAs jo uosuedwod ‘qol einbi4

.
6ap ‘YHJ 1V
st o1 [ [] s- ol-
_|1-|1..|_|-|-|.|1_|_1-|1..|_|..I.|14|_1-|.IJ ste-
09250°=
Al -
e 00£2°01= duviy 4
v oozz - www | 0%
— se‘e-
- e
~ gere
8 3 v 2 [ 2- »-
T T re°e-
4
-{ 20°8-
e
.
00050°= 3 _] 209
0091°C = duv
0072 = NIy ]
= 99°9

Q3LNdWOD — — — = 'v1lva

00850 = X
00.8°2 = VW
005Cr°2 = WMWY

[ A ]
09£8°2 = AW
0Oy L = NUW

T ST S T

1

i

so°e-

ce’o

s0°e

70

n
Wy



I 91qeL U} G ON 19S eieg g0k x Z'9="Y ‘09°0=W ‘lI0}11V 2100 VOVN
PalJIPO [OLIBA BlEQ IS8 L UM S0 JuS1913§90D H17 PazISeylAs jo uosuedwod “ei} ainbig

*9da ‘VHA'TV
b1 1 4] 21 [ 1} ] 9 * " 21 [ 1} ] 9 ’ 2 [ ] 9 1] 21 [ ]} ] 9
| sze r~—r T T T T T ]% | L B BN LN ML B
3 sz
"o : —
1 3
] - e
- see ] .
] 3 e
» 3
-~ 0l 1 —
] / -1 8%
] ' ]
oorizey 1 . / LIIEAS 0099i°s 3 |
006s°s = aww | 5 0i9's = aww ] g2 N
0002°6 = WM ] 00SE "L = WMW 00986 = WMV
3 s 3 e ~--f -
noooan e s ’ ’ 2 I TR ’ ’ ’ 2 S22 M §2 oS §2Z 00 2 0%

| A LI BRI BANLAN SN AR B 20 T 17T T T T T e [RAARSSARRY AASAS RARAS LARLE RARLS RAAMS

re /
#rl ve

99 )
- 9
-~ g0 E
) -~ 80
- o4

00691°= »
00LL°C = W — 2°1
008Y°L = MWW

00880 °= X
LIS = dvW Wér°L = VW
# 000r°L = MW 0068° = MW

lllllllllllillillll

71




I 9jqeL Ul G "ON 13S BjeQ 01 X 2'9= Uy ‘09'0= W N0}V 2100 VOVN Palipo
|OUIBA eleq 1591 YuMm sdoo juaidiyyao) yuswow buiydid pezisayjuis jo uosuedwon -qii ainbi4

st L 1] 1 L] £-

[frvyrrvyvrryrryrrryryrrrrToayy

FE

00980 °=
0029°L = 4wy _|
00I6°y = WMW

[ A A

-
-
~
-
-
-
«®
w
-
~

90591 °= X
BICES = VW
W08 = VMW

2ol laag

ci°e-

0e-

£0°0-

cie-

£0°0-

o

' *9dd ‘VHJIIV

9 14 2l L1} 8 9

UANEL A DL B A AL LA B

13
» 00112°: ¥
\ 0065°C = dNuW

0082°6 » NYIW

L 1 n 2 L 1] ] 9

kS 00991°= %
‘Y 0L = dHYW
[} 00¥8°6 = UMW

painduoy ———- ‘ejeq —

] S2°e-

Q- e-

s1te-

s0°e-

012 ¥
0019°C » dv W
06CE 2 = NUNW

Lo oo b o g ot e a ol

00Cr0°= X
80L£6"r = dWuW
0092°6 = WIW

stee-

£6°0-

72



| 21qeL uy 2 "ON 19S ejeq 0k x 2'9=""4 ‘09'0=W
N0}V 8S°L-LOEZA BIe@ 1581 yum sdoo Juaidyjeod I pazisayuis jo uosuedwo) -ez| ainbiy

*93Q ‘VHJIV
91 1 2] 2l [ 1] ] 9 1 4 b1} 1 4] k4] el 8 9 ’ L4 21 ol ] 9 14 £ [}
T £2¢9 I ' | A A LA B AN BNLIN R e
(134 ] ”w'e
(Y2 ] £2°9
[ 2] [ M1
00ic2°s 3 s2°1 00582°= 3 6824
800°S » W 002C°5 = dwW
9012°6 = wWMW 0059°6 = WM W 00LE°2 = NUMW
©l [ 138}
91 " 2 (1} ] ’ ’ 11 2 ]} (] 9 ’ 2 " 2l L1} e s ’ z
YT 17 71 | DL | r »e [ T LI S SN SR S m 2'e | LANES NN Subn NN SEN HNNR AN SN
L 2y
e
-1 9
4
9
-1 8‘¢
L e
-1 9l
. [ ]
00E91°= | 21 00921's 3 00500 ¥ _|
00992°C = W - 0021°C = v w — 2°I 0%°r « 4w
Dypst” 0059°6 = wMW 0z -« W | 0657, = WW
bl 3 } bl A | -

paandwo)y --—-- ‘e3EQ

73



| a|qeL ul Z "ON 13S ejeq g01 x 2'9= Uy ‘09'0= W ‘ito}1V 85°L-LOEZA

ejeg 1591 yum sdooT juaidiyyao) yuswoly buiyoud pazisayiAs jo uosuedwod 'qz| ainbid4

9 " 2t ol ] 9
v 1 v 1 T v T T
o0lg2°= 2

00L°'S = AW
0126 = MWW

- o021’ A
' NIl’C = AW
0018°6 = WWW

Illlllllllllllllll

sI°e-

c1°e-

Mne-

*9Ed ‘VHITV
9 " 2 [ 1) [ ] ] »
—\ L | — L4 — L] - T — T d : |
[ 7 TAL S |

llll]lllllllL'l

w st ol < (] s-
---1--‘1-1—11-—1--
sefee™ 1

.\ WL = MWW ]

00er°L = WMW _|

[ WIS W

painduoy —-——- ‘eaeQ

©e-

$0°0-

o1’

1 1] k1 [ 1] 9 14 4
Tﬁu | 1 LI
U 0E9 "= ¥

M62°C = AW ]
00LL "L = WM™

llll!llllllillllllll

ol’e-

[ 13 o

£40°0-

74



UNSTEADY UNSTALLED SUBSONIC AERODYNAMICS

The use of quasi-static airloads in the aeroelastic analysis of
advanced propeller systems (such as prop-fans) lends itself to simplicity and,
hence, economy rather than accuracy. For an accurate quantitative aero-
elastic analysis, unsteady aerodynamic forces become indispensible. This
can be seen by noting the 1ift coefficient variations with reduced frequency
shown in Fig. 13 for a two-dimensional airfoil at a subsonic Mach number
typical of prop-fan operations. The reduced frequency range shown in Fig. 13,
moreover, is typical of the vibration modes of real prop-fan blades. The
aerodynamic force lag is substantial as implied by the imaginary part of the
lift coefficient.

The majority of the available unsteady aerodynamic 1lift and moment in-
formation for airfoils comes from theory or experiment in the (real) fre-
quency domain instead of in the time domain. This is mostly due to the sim-
plicity in mathematics and experimental effort in working in the frequency
domain. 1In order to perform time-history solutions for an aeroelastic prob-
lem, however, the frequency domain unsteady aerodynamic data must be properly
transformed into the time domain. The frequency domain unsteady aerodynamic
data are typically in tabulated or transcendental function form. As a
result, it is difficult to perform a transformation which is both accurate
and economical. 1In cases where only eigensolutions are required, there
remains a fundamental problem of generalizing data available only in the fre-
quency domain (constant amplitude oscillation) to the complex frequency or
Laplace variable domain (decaying and growing oscillatioms).

In order to overcome the above mentioned difficulties, Padé approximants
have been introduced in the literature as an approximate but consistent way
to bridge the gap between the (real) frequency domain usnteady aerodynamic
data and the time domain description of the unsteady aerodynamic forces. See,
for example, Reference 19. As opposed to the generally transcendental nature
of the unsteady aerodynamic data, the Padé approximants are defined in terms
of rational functions that are known to have simple Laplace inversions or
inverse Fourier transforms. Besides its mathematical advantage, the Pade
approximant also provides a quick method for interpolating and/or extrapolat-
ing the frequency domain data, which are usually limited to some discrete
frequencies.

The sources of unsteady aerodynamic data for generating Padé approxi-
mants can be theoretical and/or experimental in nature. If necessary, the
data source can even be nonlinear as exemplified by the time domain transonic
LTRAN2 code or its advanced versions (References 20 and 21). Such nonlinear
sources can be used either in the frequency domain by explicitly making the
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EXACT SOLUTION (Ref. 18)
——— —  PADE APPROXIMANT

M=20.8
TWO DIMENSIONAL AIRFOIL

10

REAL PART

'————————-{::’:.’__:

UNSTEADY LIFT COEFFICIENTS Cy,

IMAGINARY PART ———
0

. N N
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

REDUCED FREQUENCY, k

Figure 13. Example of Unsteady Aerodynamic Airfoil Characteristics and
Associated Pade Approximation

76



airfoil motion sinusoidal (in which case only the first harmonic component
of the total airfoil is extracted and used), or in the time domain itself
using indicial responses. In the latter case, the Padé form lends itself
equally well to an exponential fitting procedure such as Prony's method
given in Reference 22.

In the following subsections, the sources of unsteady aerodynamic data
used in this study are first described §nd then the data synthesization pro-
cedures for rendering these data to Pade forms are discus§ed. Then, in the
subsequent subsections, the details of going from the Pade forms to linear
differential equations are described.

Sources of Unsteady Airloads

Either theoretical or experimental data can be used in Padé approxima-
tions. 1In this report, both data source types were used. The theoretical
linear unsteady aerodynamic data source selected is the work of Jordan
(Reference 18) for two dimensional flow about an isolated flat plate air-
foil. The experimental data source used is that of Davis and Malcolm
(Reference 23) for the NACA 64A10 airfoil. The data were put in standard
forms according to the following 1ift and (quarter chord) pitching moment
coefficient definitions before synthesization.

_L
1 pu?
2 Puh

Cﬁh - (100a)

Ce * T2 (100b)

Cm, = —— 100
h alpu%h (100c)

i M
Cmq 1A% (100d)
5 .

Here h and o are the airfoil plunging amplitude and the airfoil pitching
amplitude, respectively. The pitching motion and the moment are defined
throughout this section about the quarter chord. The total 1lift and moment
coefficients are then given simply by the sums of the plunging and pitching

results.
]
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Cp = Cgh + @ (101)

Cm = cmhﬁ+cmaa (102)

1
Synthesization of Data to Pade Form

L]
The Pade approximant of any unsteady frequency domain aerodynamic
coefficient C is defined as the ratio of two polynomials in complex fre-

quency. Nt _
oj(iw)’

<

Clw)= (103)

Y
bﬁlw)

-

Mz

js1
where N is the order of the approximant. The degree of the denominator is
lower than that of the numerator by one, because of the known asymptotic
behavior at large frequencies.

—
"

Physical Constraints

The Pade coefficients aj and bj in Eq. (103) are determined by imposing

the following requirements:
(a) The zero frequency data must be satisfied exactly.

(b) The Pade approximants should approach the piston theory results
asymptotically for large frequencies.

(c) The available data (except for zero frequency) will be approximated
by Eq. (103) in the least-square sense.

(d) The resultant poles must be stable,.
Using basic concepts given in Reference 24, the 1ift and moment coeffi-

cients of plunging and pitching airfoils based on the piston theory can be
written in the following form:

.wce
C-A+|UB (104)
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where A and B are frequency independent. These constants (A, B) for both
1ift and moment coefficients of plunging and pitching airfoils are shown

below.

Constants in Force and Moment Coefficients
From Piston Theory

Unsteady
Coefficient B
4
4.1 _Xs
Cmy, ° Miz— )
4 4.1 _xo
Cla M miz—¢)
4 % _ | 4,1 _X 1 X _ 1 _XsXo
Cmq miT 2 [ Miz-T*+z2% 3 ¢c¢c)

Note: x, = pitching axis location measured from L.E.
= point about which moment is taken
full chord

(el
]
[}

Synthesization Techniques - Least-Square Fit and Weighting Schemes

1
For simplicity, a two pole Pade approximant is sought, namely, N = 2.

aliw)® + bliw)?+ cliw)+d
Clw)= 2 (105)
(iw)+ eliw) + f

To satisfy the zero frequency and high frequency limits we have, for Xg =

Xo = c¢/4, the following constraints:
d=c(o)-f
a=1/B

where :

-M/4 for Cg,
B= M for Cza
M for th

—12M/7  for Cmg (106)
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Therefore, we are left with four unknown constants: b, c, e and f. Let

Cw)=Crlw) +iCrlw)
and multiply out Eq. (105) to yield the following real equationms.

‘ w2Cq

7=

w? 0 -wC; Cgp-C(0)

(107)

0000

Least Square Fit

The unsteady aerodynamic coefficient C(w) is assumed to be known for n
frequency values. Equation (107) in general cannot be satisfied for all fre-
quencies when n > 2, In fact, we would have the following 2n equations

for for unknowns:

[A] {x} {8} (108a)

2nx4 4xi 2nxi
where:

{f =

(108b)

DO OO

The least-square solution for {x}, however, can be found as the solution of
the set of modified equations.

(el {x} = {o} (109)
4x4 4x! 4x!
where:

(e]= [a]'[a] ; [O] = [A)"[D]

]
Equation (109) is the final required form used to generate the Pade
coefficients for both the Jordan theoretical data and the Davis and Malcolm
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experimental data, as supplemented by the Jordan data for missing
frequencies. It was initially found that the Pade approximants of some
of the lift coefficients would not provide stable poles and almost all
Pade approximants of the moment coefficients contained unstable poles.

Weighting Schemes

It was believed that the unstable poles might have been caused by the
undue weighting to high frequency data in the least-square procedure de-
fined by Eq. (109). This can be seen in the coefficients in Eq. (107).
Therefore, several attempts to minimize this undue weighting for high fre-
quencies were made by dividing the two real equations in Eq. (107) by
several chosen functions of w as follows:

Option Divide lst Equation by Divide 2nd Equation by
2

1 w w

2 w ln w w ln w

3 w ln w wln w
2

4 w only for w > 1 w only for w > 1
3 3

5 w only for w > 1 w only for w > 1

As a result of these normalization processes, almost all ligt
coefficients and most moment coefficients resulted in stable Pade approxi-
mants. A further 1nterp01ation and extrapolation procedure applied to the
poles rendered all Pade approximants stable as required.

]
Working Forms of Pade Approximants - Partial Fractions

The Pade approximant in Eq. (103) can be written in terms of its par-
tial fractions. Then the total lift coefficient becomes, according to
Eq. (101),

AP Ay B
T PW LA Ly P (Bip+8y+ 220 + =2 ) (110)
p+B  P-B, P-p, PP,

where we have formally replaced the Fourier transform variable iw by the
laplace transform variable p. Meanwhile, the inflow angle, ¢, replaced the
plunging velocity variable, pﬁ/c, and the pitch angle, 8, has replaced old
symbol a. A similar equation holds for the total moment coefficient with
generally different constant coefficients and poles in Eq. (9). These
coefficients and poles are summarized in Tables IIA through IID.
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L}
Relation of Pade Approximation to Unsteady Decay Parameter

The introduction of the formalized Pade form to the description of
unsteady airloads is but a generalization of an approximation to the Wagner
function originally formulated by R. T. Jones (Reference 25). 1In the pre-
ceeding section, the unsteady decay parameter, a,» was defined using a
generalized form of this approximation (see Eq. (68)). The resulting
"effective" angle-of-attack, ag, defined using this unsteady decay parameter,
is a useful aerodynamic tool in its own right. It can be used independent
of the unsteady stalled airloads theory to approximate low frequency un-
stalled unsteady airloads. Although the effective angle-of-attack concept
assumes that plunging motion can be treated as an equivalent pitch angle,
Eq. (66) can still be used to formulate an airloads description similar to
that given above in Eqs. (101) and (102):

XY
Cp= 5 (59 +Chq ac (111)

== (Chg (112)
Cme/q 3 (U)e + (C""ao)c/4 g

It can be shown that the Laplace transforms of Eqs. (111) and (112)
together with that for the effective angle-of-attack, ap, result in mathe-
matical forms which are identical to Eq. (110). The various constants de-
fining the Laplace transformed 1ift and moment equations, for the Generalized
Wagner function (ap) formulation are given in Table III.

Differential Equation Form
The starting points for formulating practical differential equations
for the airloads are the Laplace transformed equations for lift and pitching
moment, as typified by Eq. (110). The expressions for both the 1lift and

moment coefficients may then be rewritten in the same abbreviated general
form:

AC = [A.qb+ Axx + A3y +B,p8 + By6 + B3z + B4w] (113)
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Table I1I. Padé Coefficients for Generalized Wagner Function
Symbol Clh th
- 2 2
P1 -0.022758 -0.022758
?, -0.1582 -0.158°
Al Ciu Cmao
o
A2 -Cga (0.165) —Cmu (0.165)
° o
A3 ‘Cga (0.335) -Cma (0.335)
o o
cla Cmu
P1 --0.0227562 -0.0227582
P2 —0.1582 -0.1582
B1 Cgu + 0.57 cmq - 0.257
° i o
) 32 C‘Qq Cmao
o
2 2
B3 Cguo (.1648-.00758°) Cmuo (.16483 .00758°)
2 2
Ba Cgao (.33517 .100558°) Cmuo (.33517-.1005557)
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L
where Ac refers to a perturbational implementation of the Pade theory, to
be discussed in a later section, and where the augmented state variables
appearing in Eq. (113) are given by:

pe
x= — (114)
p-f
y= 22 (115)
P=F,
— (116)
P-R
Po
- Pe 117
w oD, (117)

The above constants and poles have unique values for lift and for moment
as shown in Tables II and III.

For each coefficient, there are generally four Laplace transformed
expressions to solve of the form presented in the above equations:

Since the Laplace operator is invertible, the associated differential
equation becomes:

Px- PP = f>|x (118)

and then after nondimensionalizing the time differentials by aerodynamic
time (chord/velocity) and rearranging:

- [-g- 6]x=$ (119a)

where U and ¢ are the nondimensionalized velocity and chord, respectively.
Similarly:
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AETY: iiom)
C

ii‘—[%q]z:b+ (119¢)
W —[%P?_]w=§ (119d)

Solving these differential equations over a time step, Ay, gives the
following formulas:

AD * AU
R =AY ¢ qggAW
X =X,_, e °© + = e -1 (120a)
AU * AU
Py = AV P, =AY
Y= Y-y €°C + _f [e 2 - '] (120b)
Up,/¢
pdav L’] P EAW
1 t r
= e'C + —_— c 1
2, % 2, Y [e ] (120¢)
7] 3* ]
= AV 8 -LLAW
W, = ecC — T - 1
K= Wi_, * She [e c I] (120d)

where (k-1) and (k) refer to successive time steps, where Ay is the time
increment, and where each expression is formulated for both lift and for
moment.,

Implementation Within the Time-History Solution

The Padé coefficients and poles, computed using the data synthesiza-
tion techniques di§cussed above, were included in the G400PROP time-history
solution. The Pade approximations of the Jordan (theoretical) and the
Davis and Malcolm (experimental) aerodynamic data sets were tabulated for
variations in Mach number from 0.5 to 0.95 for Jordan, and for a Mach number
of 0.8 for Davis and Malcolm. A linear interpolation scheme was devised in
order to obtain Padé values at intermediary Mach numbers.
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Since the Pade theory is based upon classical small amplitude
aerodynamic theory, a perturbational implementation appears warranted. To
this end, an option was included to use either perturbational or total
(perturbational plus static) pitch and inflow angles in the calculations
of Acy and Acp. The option to use the total angle description in place of
the perturbational angle description was included to allow for lack of
static airfoil data.

With the perturbational approach, the steady-state values of the pitch
and inflow angles are estimated by eliminating the contributions to these
angles due to elastic responses. This estimation is accomplished by elim-
inating the elastic torsion from the pitch angle and the explicit rate
dependent terms from the tangential and perpendicular section velocities
used to form the inflow angle. Thus, referring to Eqs. (54), (46) and
(50) we have:

NTM
8o = Oy - Z. %, g, (121a)
l:
- UP+ VZG
$,=tan  (———) 121b
0 UT... vys ( )

Therefore the perturbational angles become:

§=-6-6, iP=%- ¢, (122)

at each time step.

a "N

These essent%ally filtered values of 6 and ¢ would theg be used in
computing the Pade Acl and Acm coefficients, and the & and ¢ values would
be used to compute a steady-state cy and cp_ (from the static airfoil

tables). The static S and mg would be added to the Pade bc, and Ac_:

C=Coo + OCy 5 Cm=Cmy+ OCm (123)

The object of this filtering is to produce pert